摘要
本文研究非自治非线性二阶常微分方程存在周期解的充分条件.在满足本文定理的条件下,作者证明所研究的二阶方程在相空间中的Poincare映射是平面上有奇点的动力系统,从而证明原方程有周期解.这一结果全面推广已有的若干结论.
In this paper we study the sufficient conditions of existence of the periodic solution for the second order O.D.E.We prove that,under the theorem's conditions the Poincar6 mapping of the O.D.E.is the dynamical system on plane, which has at least a nontrivial singularityj hence the O.D.E.has nontrivial periodic solution. The result in this paper is generality of the preceding.
出处
《应用数学学报》
CSCD
北大核心
1996年第3期321-327,共7页
Acta Mathematicae Applicatae Sinica
关键词
周期解
奇点指数
常微分方程
非线性
Periodic solution, Poincare mapping,index of the singularity