摘要
DwightM.Olson和TerryL.Jenkins[4]定义了由任意环类确定的一种根类(M).一个环R∈(M)当且仅当R的每一个非零同态象或者包含一个非零M理想或者有本质理想.他们提出两个需要进一步讨论的问题.对于一个同态闭环类M,(M)和由M生成的低根类(M)有什么关系?对于一个正则环类M,是否有环类N使得上根(M)=(N)?本文将对这两个问题给出回答并讨论这种根类簇的性质.
Dwight M. Olson and Terry L. Jenkins[4] defined one kind of radical classes(M) by an arbitrary class M of rings. A ring Re,(M) iff each nonzero homomorphic image of R either contains a nonzero M-ideal or has an essential ideal. They suggested two problems for further investigation:For a homomorphicaly closed class M of rings,what is the relationship between(M) and the lower radical class (M) generated by M? For a regular class M of rings,is there any way to realize ac(M) as(M) for some class N of rings related to M? The two problems are given solutions and discussed the properties of the collection of all such radical classes.
出处
《内蒙古大学学报(自然科学版)》
CAS
CSCD
1996年第5期585-588,共4页
Journal of Inner Mongolia University:Natural Science Edition
基金
国家自然科学基金
内蒙古教育厅自然科学基金