摘要
The splitting of potential energy curves for the states X^2Ⅱ3/2, ^2Ⅱ1/2 and A^2∑+ of hydroxyl OH under spin-orbit coupling (SOC) has been calculated by using the SO multi-configuration quasi-degenerate perturbation theory (SO- MCQDPT). Their Murrell Sorbic (M-S) potential functions have been derived, then, the spectroscopic constants for X^2Ⅱ3/2, ^2Ⅱ1/2 and A^2∑+ have been derived from the M-S function. The calculated dissociation energies for the three states are Do[OH(X^2Ⅱ3/2)]=34966,632cm^-1, Do[OH(^2Ⅱ1/2)]=34922.802cm^-1, and Do[OH(A^2∑ )]=17469.794cm^-1, respectively. The vertical excitation energy u[^2Ⅱ1/2(v = 0) → X^2Ⅱ3/2(v = 0)] = 139.6cm^-1. All the spectroscopic data for the X^2Ⅱ3/2 and ^2Ⅱ1/2 are given for the first time except the dissociation energy of X^2Ⅱ3/2.
The splitting of potential energy curves for the states X^2Ⅱ3/2, ^2Ⅱ1/2 and A^2∑+ of hydroxyl OH under spin-orbit coupling (SOC) has been calculated by using the SO multi-configuration quasi-degenerate perturbation theory (SO- MCQDPT). Their Murrell Sorbic (M-S) potential functions have been derived, then, the spectroscopic constants for X^2Ⅱ3/2, ^2Ⅱ1/2 and A^2∑+ have been derived from the M-S function. The calculated dissociation energies for the three states are Do[OH(X^2Ⅱ3/2)]=34966,632cm^-1, Do[OH(^2Ⅱ1/2)]=34922.802cm^-1, and Do[OH(A^2∑ )]=17469.794cm^-1, respectively. The vertical excitation energy u[^2Ⅱ1/2(v = 0) → X^2Ⅱ3/2(v = 0)] = 139.6cm^-1. All the spectroscopic data for the X^2Ⅱ3/2 and ^2Ⅱ1/2 are given for the first time except the dissociation energy of X^2Ⅱ3/2.
基金
Project supported by the National Natural Science Foundation of China (Grant No 10376022).