期刊文献+

The splitting of low-lying states for hydroxyl molecule under spin orbit coupling 被引量:2

The splitting of low-lying states for hydroxyl molecule under spin orbit coupling
下载PDF
导出
摘要 The splitting of potential energy curves for the states X^2Ⅱ3/2, ^2Ⅱ1/2 and A^2∑+ of hydroxyl OH under spin-orbit coupling (SOC) has been calculated by using the SO multi-configuration quasi-degenerate perturbation theory (SO- MCQDPT). Their Murrell Sorbic (M-S) potential functions have been derived, then, the spectroscopic constants for X^2Ⅱ3/2, ^2Ⅱ1/2 and A^2∑+ have been derived from the M-S function. The calculated dissociation energies for the three states are Do[OH(X^2Ⅱ3/2)]=34966,632cm^-1, Do[OH(^2Ⅱ1/2)]=34922.802cm^-1, and Do[OH(A^2∑ )]=17469.794cm^-1, respectively. The vertical excitation energy u[^2Ⅱ1/2(v = 0) → X^2Ⅱ3/2(v = 0)] = 139.6cm^-1. All the spectroscopic data for the X^2Ⅱ3/2 and ^2Ⅱ1/2 are given for the first time except the dissociation energy of X^2Ⅱ3/2. The splitting of potential energy curves for the states X^2Ⅱ3/2, ^2Ⅱ1/2 and A^2∑+ of hydroxyl OH under spin-orbit coupling (SOC) has been calculated by using the SO multi-configuration quasi-degenerate perturbation theory (SO- MCQDPT). Their Murrell Sorbic (M-S) potential functions have been derived, then, the spectroscopic constants for X^2Ⅱ3/2, ^2Ⅱ1/2 and A^2∑+ have been derived from the M-S function. The calculated dissociation energies for the three states are Do[OH(X^2Ⅱ3/2)]=34966,632cm^-1, Do[OH(^2Ⅱ1/2)]=34922.802cm^-1, and Do[OH(A^2∑ )]=17469.794cm^-1, respectively. The vertical excitation energy u[^2Ⅱ1/2(v = 0) → X^2Ⅱ3/2(v = 0)] = 139.6cm^-1. All the spectroscopic data for the X^2Ⅱ3/2 and ^2Ⅱ1/2 are given for the first time except the dissociation energy of X^2Ⅱ3/2.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第5期998-1003,共6页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant No 10376022).
关键词 SOC SO-MCQDPT method spectroscopic constants OH radical SOC, SO-MCQDPT method, spectroscopic constants, OH radical
  • 相关文献

参考文献16

  • 1Zhang S Y 2003 Chin. Phys. 52 2290.
  • 2Ma H T, Bian W S, Zheng S J and Meng L P 2005 Acta Chim. Sin. 63 263.
  • 3Barrow R E 1956 Ark, Fys. Semin. Trondhein 11 281.
  • 4Ruscic B, Wagner A F and Harding L B 2002 J. Phys.Chem. A 106 2727.
  • 5Joens J A 2001 J. Chem. Phys. 105 11041.
  • 6Zhou W, Yuan Y and Zhang J S 2003 J, Phys, Chem A 119 9989.
  • 7Fedorov D G, Koseki S, Schmidt M W and Gordon M S 2003 Int. Rev, Phvs. Chem 22 577.
  • 8Foldy L L and Wouthuysen S A 1950 Phys. Rev. 78 29.
  • 9Fedorov D G, Koseki S, Schmidt M W and Gordon M S 2003 Int. Rev. Phys. Chem. 22 551.
  • 10Mφiler C and Plesset M S 1934 Phys. Rev. 46 618.

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部