期刊文献+

单质子化蛋白质肽段结构表达及其离子迁移谱碰撞截面定量预测

Molecular Structural Characteristics of Singly Protonated Peptides for Proteins and Quantitative Prediction of Collision Cross Section for Ion Mobility Spectrometry
下载PDF
导出
摘要 基于分子二维图形特征提出一种新型结构参数化方法:分子电性作用矢量(MEI);应用于考察107个单质子化肽段样本集结构表征及离子迁移谱碰撞截面模拟和预测及严格检验,所得3个模型回归建模及留一法交叉验证复相关系数(R和Q)分别为:R=Rcu=0.983,0.981,0.980和Q=Rcv=0.979,0.979,0.978。MEI对复杂有机分子结构表达准确且性质预测良好。 Molecular structural characteristics of singly protonated peptides for proteins are primarily investigated to perform quantitative prediction of collision cross section for ion mobility spectrometry. Based on two-dimensional topological characterization, a novel description vector called molecular electronegativity interaction vector (MEI) is proposed to express the structural characterization of molecule. Estimation and prediction of collision cross section for ion mobility spectrometry (IMS) of 107 singly protonated peptides for proteins were successfully done through MEI description vector. A good model is strictly established by multiple linear regression (MLR) with both cumulative multiple correlation coefficient Rcum and leave-one-out cross-validation QLOO are 0. 983 and 0. 979, respectively. From the obtained results, it is suggested that MEI is an excellent vectorial descriptor with both good structural selectivity and high property correlation, and quite suitable for quanti- tative structure property relationship for spectroscopy (QSPR/QSSR).
出处 《质谱学报》 EI CAS CSCD 2006年第2期84-89,共6页 Journal of Chinese Mass Spectrometry Society
基金 霍英东基金(1998) 国家春晖计划教育部启动基金(1999-1-4/38) 湖南大学化学生物传感与计量学国家重点实验室(2005-12) 重庆大学创新基金(03-5-6+04-9-1)资助
关键词 分子电性作用矢量 离子迁移谱 碰撞截面 定量构效关系 molecular electronegativity interaction vector (MEI) ion mobility spectrometry(IMS) collision cross section (CCS) quantitative structure-property relationship(QSPR) quantitative structure-spectrum relationship (QSSR)
  • 相关文献

参考文献14

  • 1Fenn J B, Mann M, Meng C K, et al. Electrospray Ionization for Mass Spectrometry of Large Biomolecules[J]. Science, 1989, 246: 64-71.
  • 2Karas M, Hillenkamp P. Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10000 Daltons[J]. Anal Chem, 1988, 60:2 299-2 301.
  • 3Hill H H, Siems W F, Louis R H, et al. Ion Mobility Spectrometry. Anal Chem, 1990, 62:1 201A-1 209A.
  • 4Myung S, Lee Y J, Moon M H, et al. Development of High-Sensitivity Ion Trap Ion Mobility Spectrometry Time-of-flight Techniques: A Highthroughput Nano-LC-IMS-TOF Separation of Peptides Arising from a Drosophila Protein Extract[J]. Anal Chem, 2003, 75: 5 137-5 145.
  • 5Beegle L W, Kanik I, Matz L, et al. Electrospray Ionization High-Resolution Ion Mobility Spectrometry for the Detection of Organic Compounds, 1.Amino Acids[J]. Anal Chem. 2001, 73: 3 028-3 034.
  • 6Revercomb H E, Mason E A. Theory of Plasma Chromatography/Gaseous Electrophoresis. Anal Chem, 1975, 47: 970-983.
  • 7Katritzky A R, Maran U, Lobanov V S, et al.Structurally Diverse Quantitative Structure-Property Relationship Correlations of Technologically Relevant Physical Properties [J]. J Chem Inf Comput Sci, 2000, 40:1-18.
  • 8Hansch C, Hoekman D, Leo A, et al. Chembioinformatics: Comparative QSAR at the Interface between Chemistry and Biology[J]. Chem Rev, 2002, 102: 783-812.
  • 9Pauling L. The Nature of Chemical Bond Ⅳ. Energy of Single Bonds and the Relative Electronegativity of Atoms[J]. J Am Chem Soc, 1932, 54:3 570-3 582.
  • 10Mosier P D, Counterman A E, Jurs P C, et al.Prediction of Peptide ion Collision Cross Sections from Topological Molecular Structure and Amino Acid Parameters [J]. Anal Chem, 2002, 74:1 360-1 370.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部