期刊文献+

基于多类最大散度差的人脸表示方法 被引量:17

Face Representation Based on the Multiple-class Maximum Scatter Difference
下载PDF
导出
摘要 将用于两类分类的最大散度差鉴别准则推广为多类最大散度差鉴别准则,并建立了基于该准则的一种新的人脸表示方法.基于多类最大散度差鉴别准则的人脸表示方法有效避免了传统鉴别分析方法在人脸特征提取时通常面临的小样本模式识别问题.在国际标准人脸图像数据库ORL、Yale以及FERET上的实验结果表明,与Fisherfaces、Eigenfaces、正交补空间、零空间等人脸特征提取方法相比,新的人脸表示方法具有一定的优势. In this paper we extend the maximum scatter difference discriminant criterion which is proposed for binary classification to the multiple-class maximum scatter difference discriminant criterion. Based on this new criterion we establish a novel face representation method. The facial feature extraction method based on the multiple-class maximum scatter difference discriminant criterion effectively avoids the small sample size problem which always brings troubles to conventional discriminant analysis methods when they are applied to face recognition tasks. Experimental results conducted on international benchmark datasets such as ORL, Yale, and FERET face image databases demonstrate that the novel face representation method is promising in comparison with Fisherfaces, eigenfaces, orthogonal complimentary space method, and null space method.
出处 《自动化学报》 EI CSCD 北大核心 2006年第3期378-385,共8页 Acta Automatica Sinica
基金 国家自然科学基金(60472060 60473039)资助
关键词 最大散度差 FISHER鉴别准则 特征向量 特征提取 人脸识别 Maximum scatter difference, Fisher discriminant criterion, eigenvectors, feature extraction, face recognition
  • 相关文献

参考文献1

二级参考文献6

  • 1Fisher R A. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 1936, 7: 179-188
  • 2Vapnik V. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995
  • 3Foley D H, Sammon J W. An optimal set of discriminant vectors. IEEE Transactions on Computer, 1975,24(3): 281-289
  • 4Jin Z, Yang J Y, Hu Z S, Lou Z. Face Recognition based on uncorrelated discriminant transformation. Pattern Recognition, 2001, 34(7): 1405-1416
  • 5Bian Zhaoqi, Zhang Xuegong. Pattern Recognition. Beijing: Qinghua University Press, 2000 (in Chinese)
  • 6Hsu C, Lin C, A Comparison of Methods for Multiclass Support Vector Machines. IEEE Transaction on Neural Networks, 2002, 13(2): 415-425

共引文献57

同被引文献150

引证文献17

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部