期刊文献+

基于D-S证据理论和集成神经网络的磨粒识别 被引量:3

Wear Particles Classification Based on Dempster-shafter Evidential Reasoning and Integrated Neural Network
下载PDF
导出
摘要 针对磨粒的识别问题,利用数字磨粒图像分析方法,结合D-S证据理论和BP神经网络,建立了基于D-S证据理论的集成神经网络磨粒融合诊断方法。首先对磨粒图像进行处理,并利用统计分析方法和傅立叶分析方法对处理好的磨粒图片进行分析得到磨粒特征;然后基于统计分析方法和傅立叶分析方法建立对应的两个BP分类子神经网络,利用典型的磨粒样本对BP子神经网络进行训练,得到初步的诊断结果;最后用D-S法对子神经网络诊断结果进行融合,得到最终的诊断结果。算例分析结果表明,基于D-S证据法和集成神经网络的磨粒融合诊断方法比单个诊断方法具有更高的准确性。 A wear particles classification method based on dempster-shafter evidential reasoning and integrated neural network was put forward. Firstly, digital wear debris images were converted to the images needed, and the wear particles characters were obtained. Then two sub-neural networks based on statistical analysis and Fourier analysis was established, and many typical wear particles features as training samples were provided. After each sub-neural network was trained successfully,the preliminary diagnosis of each sub-neural network was achieved. By using of the dempster-shafter evidential reasoning,the finial fusion diagnosis results were obtained. A practical example shows that the fusion identification method based on dempster-shafter evidential reasoning and integrated neural network is more accurate than the single identification method.
出处 《润滑与密封》 EI CAS CSCD 北大核心 2006年第5期64-67,70,共5页 Lubrication Engineering
关键词 磨粒识别 信息融合 集成神经网络 D-S证据法 图像处理 wear particles identification data-fusion integrated neural network dempster-shafter evidential reasoning image processing
  • 相关文献

参考文献10

  • 1Z Peng,T B Kirk.Wear particle classification in a fuzzy grey system[J].Wear,1999,225/229:1238-1247.
  • 2B J Rodance,S Raadnui.The morphological attributes of wear particle-their role in identifying wear mechanisms[J].Wear,1994,175:115-121.
  • 3Roylance B J,Raadnui S.The Morphological Attributes of Wear Particle-their Role in Identifying Wear Mechanisms[J].Wear,1994,175:115-121.
  • 4Luerkens D W,Beddow J K,Vetter A F.Morphological Fourier descriptors[J].Powder Technology,1982,31:209-215.
  • 5李艳军,左洪福,陈果.基于灰色聚类的磨粒自动识别[J].航空学报,2003,24(4):373-376. 被引量:11
  • 6陆永耕,赵淳生,葛世荣.基于链码的金属磨粒分形参数计算[J].中国机械工程,2004,15(7):614-617. 被引量:1
  • 7吴振峰.基于磨粒分析和信息融合的发动机磨损故障诊断技术研究[D].南京:南京航天航空大学,2001.
  • 8康剑莉,芦亚萍,周银生.改进的BP算法在磨粒识别中的应用[J].润滑与密封,2005,30(2):149-150. 被引量:8
  • 9Kolmogorov.On the representation of continuous functions of many variables by superposition of continuous functions of one variable and condition[J].Dok1,Akad.Nauk,USSR,1957,114:953-956.
  • 10D P安德森.磨粒图谱[M].金元生,杨其明,译.北京:机械工业出版社,1987.

二级参考文献8

  • 1禹和济 韩庆大 李沈 等.设备故障诊断工程[M].北京:冶金工业出版社,2001.931-949.
  • 2左洪福.发动机磨损状态监控与故障诊断技术[M].北京:航空工业出版社,1995.63-149.
  • 3Anderson D P. Atlas of wear particles (Revised) [R]. New Jersey: The Naval Air Engineering Center, REPORT NAEC-92-163.
  • 4王佳斌 康赐荣.MATLAB中神经网络工具包的应用[J].华侨大学学报,2000,21(3):218-220.
  • 5Xu K, Luxmoore A R , Deravi F . Comparison of shape features for the classification of wear particles [ J]. Engineering Applications of Artificial Intelligence, 1997, 10 ( 5 ) : 485 -493.
  • 6刘思峰 郭天榜 党耀国 等.灰色系统理论及其应用[M].北京:科学出版社,2000.85-89.
  • 7张健,陈勇,夏罡,何永保.人工神经网络之股票预测[J].计算机工程,1997,23(2):52-55. 被引量:24
  • 8陈果,左洪福.润滑油金属磨粒的分类参数研究[J].航空学报,2002,23(3):279-281. 被引量:18

共引文献20

同被引文献19

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部