期刊文献+

统一混沌系统的脉冲切换控制 被引量:1

Impulsive Switched Control of the Unified System
下载PDF
导出
摘要 利用脉冲微分方程的稳定性和切换系统的稳定性理论,导出了统一混沌系统稳定的充分条件,并通过仿真验证了等间脉冲切换控制良好的控制效果. A sufficient condition for stability of unified chaotic system is derived on the basis of the stability theory of impulsive differential equation and switched systems. It has been proved by the result of illustrative example that the control can achieve an effective control.
出处 《中原工学院学报》 CAS 2006年第2期46-48,共3页 Journal of Zhongyuan University of Technology
关键词 脉冲微分方程 混沌系统 脉冲控制 切换系统 impulsive differential equation chaotic system impulsive control switched systems
  • 相关文献

参考文献5

  • 1Liao T L, Lin S H. Adaptive Control and Synchronization of Lorenz Systems[J]. Journal of the Franklin Institute,1999,336:925-937.
  • 2Tao Yang,Leon O. Chua. Impulsive Stabilization for Control and Synchronization of Chaotic Systems: Theory and Application to Secure Communication[J]. IEEE Transactions on Circuits and Systems, 1997,44(10) :976-988.
  • 3Jinhu Lu,Fengling Han,Xinghuo Yu. Generating 3-D multi-scroll chaotic attractors: A hysteresis series switching method[J]. Automatica,2004,40 : 1677-1687.
  • 4Lakshmikantham V,Bainov D D, Simeonov P S. Theory of Impulsive Differential Equations[M]. Singapore: World Scientific,1989:1-142.
  • 5陶朝海,陆君安,吕金虎.统一混沌系统的反馈同步[J].物理学报,2002,51(7):1497-1501. 被引量:100

二级参考文献1

  • 1胡刚 萧井华 等.混沌控制[M].上海:上海科技教育出版社,2000..

共引文献99

同被引文献8

  • 1陈贵词,张芙蓉.一类不确定时滞系统的脉冲控制[J].武汉科技大学学报,2006,29(5):517-519. 被引量:1
  • 2马铁东,张化光.参数不确定统一混沌系统的脉冲控制[J].东北大学学报(自然科学版),2007,28(7):917-920. 被引量:3
  • 3Yassen M T. Chaos control of chaotic dynamical systems using back stepping design [J ] . Chaos Solitons and Fractals, 2006, 27 (2) :537-548.
  • 4Sun J T, Zhang Y P , Wang L , et al . Impulsive robust control of uncertain Lure systems [ J ] . Physics Letters A, 2002, 304 (5/ 6) :130-135.
  • 5Chen D L , Sun J T , Huang C S. Impulsive control and synchronization of general chaotic system [J ] . Chaos Solitons and Fractals, 2006, 28 (1) :213-218.
  • 6LuJ H ,Chen G R , Cheng D Z , et al . Bridge the gap between the Lorenz system and Chen system [J] .International Journal of Bifurcation and Chaos , 2002 , 12(12) :2917-2926.
  • 7Lakshmikantham V, Bainov D D, Semieonov P S. Theory of Impulsive Differential Equations [M]. Singapore: World Scientific, 1989.
  • 8王雪梅,王帅.统一混沌系统及其在安全通信中的应用[J].微计算机信息,2007(05X):57-58. 被引量:3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部