期刊文献+

引导型免疫算法研究 被引量:2

Study on Guiding Immune Algorithm
下载PDF
导出
摘要 基于免疫系统机理提出的免疫算法是一种新型的智能系统,在优化计算方面表现出巨大的潜力,具有多样性好、搜索成功率高的优点.但免疫算法在局部搜索中存在一定盲目性,搜索效率不高.本文提出引导型免疫算法,通过增强免疫算法中抗体的社会性,为免疫算法的搜索过程提供引导性,加快算法收敛速度,并对引导型免疫算法中新引入的算法参数进行了深入讨论.算法分析和仿真结果表明,引导型免疫算法在保持算法高搜索成功率的前提下,有效地提高了算法搜索效率. Immune algorithm is an intelligent system, and shows great potential in optimization. However, as the local search of immune optimizer is of some blindness, its efficiency is limited. Guiding immune optimization algorithm is proposed, which introduces sociality to immune optimization algorithm, and accordingly improves convergence speed. The related parameters are also discussed. Analysis and simulation results show that guiding immune optimizer effectively improves the searching speed of immune algorithm as well as ensures the high succeed probability.
出处 《电子学报》 EI CAS CSCD 北大核心 2005年第B12期2401-2405,共5页 Acta Electronica Sinica
关键词 优化算法 免疫算法 引导性 optimize algorithm immune algorithm guiding immune algorithm
  • 相关文献

参考文献10

  • 1De Castro L N, Von Zuben F J. Learning and optimization using the clonal selection principle [ J ]. IEEE Transactions on Evolutionary Computation. 2002,6 ( 3 ) : 239 - 251.
  • 2刘若辰,杜海峰,焦李成.一种免疫单克隆策略算法[J].电子学报,2004,32(11):1880-1884. 被引量:35
  • 3左兴权,李士勇.一种用于优化计算的自适应免疫算法[J].计算机工程与应用,2003,39(20):68-70. 被引量:13
  • 4Yinsheng Luo, Renhou Li, Feng Tian. Application of artificial immune algorithm to multimodal function optimization[ A]. 5th World Congress on Intelligent Control and Automation[ C ]. Hangzhou P R China,2004,6: 2248 - 2252.
  • 5Dipankar Dasgupta. Artificial immune systems and their applications [ M ]. Berlin Heidelberg : Springer Verlang, 1999.
  • 6Chen Xiaoping, Qu bo, Lu Gang. An application of immune algorithm in FIR filter design[ A]. IEEE International Conference on Neural Networks and Signal Processing [ C ].Nanjing, China,2003,12:473 - 475.
  • 7Jiao L C, Wang L. A novel genetic algorithm based on immunity[ J]. IEEE Trans on System, Man, and Cybernetics,Part A: Systems and Humans,2000,30 ( 5 ) : 552 - 561.
  • 8Jon Timmis, Camilla Edmonds, Johnny Kelsey. Assessing the performance of two immune inspired algorithms and a hybrid genetic algorithm for function optimization [ A ].Congress on Evolutionary Computation [ C ]. Pofland, Oregon. 2004,6:1044 - 1051.
  • 9M Oprea, S Forrest. How the immune system generates diversity :Pathogen space coverage with random and evolved antibody libraries[ A]. Wolfgang Banzhaf. Genetic and Evolutionary Computation Conference ( GECCO99 ) [ C ].Florida USA. Morgan Kaufmann Publishers. July 1999.1651 - 1656.
  • 10H Meshref, H VanLandingham. Artificial immune systems: application to autonomous agents [ A ]. 2000 IEEE International Conference on Systems, Man, and Cybernetics [ C ]. Institute of Electrical and Electronics Engineers,Incorporated, 2000,1 : 61 - 66.

二级参考文献10

  • 1NirwanA EdwinH.用于最优化的计算智能[M].北京:清华大学出版社,1999..
  • 2Jang-Sung Chun.Shape optimization of electro-magnetic devices using immune algorithm[J].IEEE transactions on magnetics,1997;33 (2) : 1876-1879.
  • 3Leandro N de Castro.Learning and optimization using the clonal selection principle[J].IEEE transactions on evolutionary computation, special issue on artificial immune systems,2001.
  • 4Licheng Jiao,lei wang.A novel genetic algorithm based on immunity [J].IEEE transactions on system,man,and cybernetics Part A :systems and Humans,2000 ;30(5).
  • 5G L Ada,G Nossal.the clonal selection theory[J].Scientific American, 1987;257(2) :50-57.
  • 6P J Bentley,J P Wakefield.Overview of Generic Evolutionary Design Systems[EB/OL].Proceedings of the 2nd On-Line World Conference on Evolutionary Computation ( WEC2 ).http://wwwbioele.nuee.nagoya-u.ac.jp/WEC2/,1996-05-5/1996-05-22.
  • 7D B Fogel,J W Atmar.Comparing genetic operators with gaussian mutations in simulated evolutionary processes using linear systems[J].Biological Cybernetics,1993,63:111-114.
  • 8H P Schwefel.Evolutionary Optimum Seeking[M].New York:John Wiley&Son,1995.
  • 9A Dekkers,E Aarts.Global optimization and simulated annealing[ J].Math Programming,1991,50:367-393.
  • 10丁永生,任立红.人工免疫系统:理论与应用[J].模式识别与人工智能,2000,13(1):52-59. 被引量:98

共引文献46

同被引文献15

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部