期刊文献+

On the Volume Formulas of Cones and Orthogonal Multi-cones in S^n(1) and H^n(-1)

On the Volume Formulas of Cones and Orthogonal Multi-cones in S^n(1) and H^n(-1)
原文传递
导出
摘要 Abstract In the study of n-dimensional spherical or hyperbolic geometry, n≥3, the volume of various objects such as simplexes, convex polytopes, etc. often becomes rather difficult to deal with. In this paper, we use the method of infinitesimal symmetrization to provide a systematic way of obtaining volume formulas of cones and orthogonal multiple cones in S^n(1) and H^n(-1).
作者 Wu-Yi HSIANG
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2006年第1期1-30,共30页 数学年刊(B辑英文版)
关键词 Hyperbolic geometry VOLUME 双曲线几何 体积公式 正交 凸多面体
  • 相关文献

参考文献3

  • 1Hsiang, W. Y., On infinitesimal symmetrization and volume formula for spherical or hyperbolic tetrahedrons, Qart. Journal of Mathematics, Oxford, 39(2), 1988, 463-468.
  • 2Hsiang, W. Y., On the optimal sphere packings in the Euclidean 8-space and its strong uniqueness theorem, preprint, HKUST.
  • 3Hsiang, W. Y., On the kissing number in the Euclidean 4-space and its strong uniqueness theorem, preprint, HKUST.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部