期刊文献+

Riemann-Finsler Geometry with Applications to Information Geometry 被引量:28

Riemann-Finsler Geometry with Applications to Information Geometry
原文传递
导出
摘要 Information geometry is a new branch in mathematics, originated from the applications of differential geometry to statistics. In this paper we briefly introduce Riemann-Finsler geometry, by which we establish Information Geometry on a much broader base, so that the potential applications of Information Geometry will be beyond statistics.
作者 Zhongmin SHEN
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2006年第1期73-94,共22页 数学年刊(B辑英文版)
关键词 Riemann-Finsler geometry Information geometry Riemann-Finsler几何学 信息几何学 分支 微分几何
  • 相关文献

参考文献13

  • 1Amari, S.-I. and Nagaoka, H., Methods of Information Geometry, Oxford University Press and Amer.Math. Soc., 2000.
  • 2Bao, D., Chern, S. S. and Shen, Z., An Introduction to Riemann-Finsler Geometry, Springer, 2000.
  • 3Amari, S.-I., Differential Geometrical Methods in Statistics, Springer Lecture Notes in Statistics, 20,Springer, 2002.
  • 4Dodson, C. T. J. and Matsuzoe, H., An affine embedding of the gamma manifold, Appl. Sci. (electronic),5(1), 2003, 7-12.
  • 5Dzhafarov, E. D. and Colonius, H., Fechnerian metrics in unidimensional and multidimensional stimulus,Psychological Bulletin and Review, 6, 1999, 239-268.
  • 6Dzhafarov, E. D. and Colonius, H., Fechnerian scaling, probability-distance hypothesis, and Thurstonian link, Technical Report #45, Purdue Mathematical Psychology Program.
  • 7Dzhafarov, E. D. and Colonius, H., Fechnerian Metrics, Looking Back: The End of the 20th Century Psychophysics, P. R. Kileen & W. R. Uttal (eds.), Arizona University Press, Tempe, AZ, 111-116.
  • 8Hwang, T.-Y. and Hu, C.-Y., On a characterization of the gamma distribution: The independence of the sample mean and the sample coefficient of variation, Annals Inst. Statist. Math., 51, 1999, 749-753.
  • 9Lauritzen, S. L., Statistical manifolds, Differential Geometry in Statistical Inferences, IMS Lecture Notes Monograph Series, 10, Hayward California, 1987, 96-163.
  • 10Murray, M. K. and Rice, J. W., Differential Geometry and Statistics, Chapman & Hall, London, 1995.

同被引文献21

引证文献28

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部