期刊文献+

相位解包裹算法中基于调制度的新质量图 被引量:18

New Quality Map Based on Modulation for Phase Unwrapping Algorithm
原文传递
导出
摘要 在移相法测量光学波面或物体形貌过程中,相位解包裹是条纹自动分析中的关键技术,而质量图对解包裹相位算法起着至关重要的作用。用计算机模拟干涉图获得相位导数偏差质量图,指出其在标识相位数据质量方面的不足,并根据调制度结合相位梯度构造出新的质量图(称之为调制度-相位梯度偏差质量图)来弥补此缺陷。再以新质量图数据为权值,采用加权最小二乘解包裹算法验证新质量图的可靠性。最后通过实验数据,比较新质量图和相位导数偏差质量图在解包裹相位算法中的作用,得到新质量图的解相结果均方根(RMS)值为2.652 rad,而相位导数偏差质量图的解相结果均方根值为5.151 rad,由此证明前者有更好的可靠性。 In the phase-shifting interferometry, the phase unwrapping is a key technique of fringe pattern analysis; meanwhile, the quality map is crucial to phase unwrapping. At first, the disadvantage of the popular phase derivative variance quality map (PDVQM) is pointed out and then, based on the modulation of interferograms, a new quality map-modulation phase gradient variance quality map (MPGVQM) is constructed. The new quality map can definitely identify the noises and phase jumping, and make up the disadvantage of the PDVQM. By use of experimental data, the new quality map and the popular one are compared and the unwrapping results are obtained. The root-meawsquare (RMS) of unwrapping phase obtained by use of the new quality value is 2. 652 rad and the other's RMS is 5. 151 rad. It proves that the new quality-map-guided least square phase-unwrapping method can successfully evade the residues and lead to the satisfactory phase unwrapping results. And it iS more reliable and more robust than that by using PDVQM.
出处 《中国激光》 EI CAS CSCD 北大核心 2006年第5期667-672,共6页 Chinese Journal of Lasers
关键词 测量 质量图 移相法 解包裹相位 调制度 measurement quality map phase shifting method phase unwrapping modulation
  • 相关文献

参考文献11

  • 1Vyacheslav V. Volkov, Yimei Zhu. Deterministic phase unwrapping in the presence of noise [J].Opt. Lett. , 2003, 28(22):2156-2158
  • 2Dennis C. Ghiglia, Mark D. Pritt. Two-Dimensional Phase Unwrapping:Theory, Algorithms, and Software [M]. New York:John Wiley and Sons. Inc. , 1998
  • 3Dennis C. Ghiglia, Louis A. Romero. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods [J]. J.Opt.Soc.Am.A,1994, 11(1):107-117
  • 4Yuangang Lu, Xiangzhao Wang, Xianghong Zhong et al.. A new quality map for quality-guided phase unwrapping [J].Chin. Opt. Left. , 2004, 2(12):698-700
  • 5Thomas J. Flynn. Consistent 2-D phase unwrapping guided by a quality map [C]. Proceeding of the 1996 International Geoscience and Remote Sensing Symposium, Lincoln NE, May 27-31, 1996, IEEE, Piscataway, NJ, 2057-2059
  • 6Thomas J. Flynn. Two-dimensional phase unwrapping with minimum weighted discontinuity [J]. J. Opt. Soc. Am. A,1997, 14(10) :2692-2701
  • 7Daniel Malacara. Optical Shop Test [M]. New York:John Wiley and Sons. Inc. , 1992
  • 8王立无,苏显渝,周利兵.相位测量轮廓术中随机相移误差的校正算法[J].光学学报,2004,24(5):614-618. 被引量:20
  • 9Xianyu Su, Weijing Chen. Reliability-guided phase unwrapping algorithm: a review [J]. Opt.&. Lasers Eng. , 2004, 42(3):245-261
  • 10路元刚,王向朝,何国田,钟向红,郑德锋.基于分支设置的质量导引相位展开算法[J].光学学报,2005,25(4):460-464. 被引量:6

二级参考文献31

  • 1Fornaro G, Franceschetti G, LanaH R et al . Robust phase-unwrapping techniques, a comparison. J Opt Soc Am (A), 1996, 13(11):2355-2366.
  • 2Song S M H, Napel S, Pele NJ etal.. Phase unwrapping of MR phase images using Poisson equation. IEEE Trans.Image Process, 1995, 4(1) :667-676.
  • 3Su X Y. Phase unwrapping techniques for 3-D shape measurement, laroc. SPIE, 1996, 2866:460-465.
  • 4Strand J, Taxt T. Performance evaluation of two-dimensional phase unwrapping algorithms. Appl Opt ,1999, 38(20) :4333-4344.
  • 5Hunt B R. Matrix formulation of the reconstruction of phase values from phase differences. J Opt Soc Am (A), 1979, 69(3):393-399.
  • 6Kerr D, Kaufmann G H, Galizzi G E. Unwrapping of interferometric phase-fringe maps by the discrete cosine transform. Appl Opt , 1996, 3S(5):810-816.
  • 7Ghiglia D C, Romero L A. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. J Opt Soc Am (A), 1994, 11(1):107-117.
  • 8V. V. Volkov, Y. Zhu. Deterministic phase unwrapping in the presence of noise[J]. Opt. Lett. , 2003, 28(22) : 2156-2158.
  • 9J. Strand, T. Taxt. Performance evaluation of two-dimensional phase unwrapping algorithms[J]. Appl. Opt. , 1999, 38(20) :4333 -4344.
  • 10D. C. Ghiglia, M. D. Pritt. Two-Dimensional Phase Unwrapping: Theory, Algorithms, and SoftTrare [M]. New York: John Wiley and Sons. Inc. , 1998.

共引文献58

同被引文献165

引证文献18

二级引证文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部