期刊文献+

共振情形m-点边值问题解的存在性 被引量:7

On the Existence of m-Point Boundary Value Problem at Resonance
原文传递
导出
摘要 研究一类共振情形二阶微分方程m-点边值问题其中m≥3为整数,ai≥0,ξi∈(0,1)(i=1,2,…,m-2)为常数满足∑i=1m=2 ai=1, 0<ξ1<ξ2<…<ξm-2.利用Mawhin重合度拓展定理,作者得到了边值问题解存在的新结果.有意义的是本文允许函数.f(t,x,y)关于变量x和y的次数大于1,特别是允许变量x的次数大于y的次数,这些结果与已有工作是不同的. By means of Mawhin's continuation theorem, we study m-point boundary value problem at resonance in the following form{x''(t) = f(t,x(t),x'(t)) + e(t), t ∈ (0, 1)x'(0)= 0, x(1) = m-2∑i=1 aix(ξi) where m≥ 3 is an integer, ai≥0,ξi∈(0,1)(i=1,2…,m-2)are constants satisfying∑i=1 m-2ai=1,=1and 0〈ξ1〈ξ2〈…〈ξm-2 m-2 A new result on the existence of solutions is obtained. The significance is that we allow the degree of power with respect to the second variable x and the third variable y of f(t, x, y) to be greater than 1, espeeially, the degree of variable x may be grater then the degree of variable y, which is different from corresponding ones of the past work.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2006年第3期687-692,共6页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(10371006)安徽省自然科学基金(050460103)省教育厅重点基金(2005kj031ZD)
关键词 M-点边值问题 Mawhin重合度拓展定理 先验界估计 m-point boundary value problem Mawhin's continuation theorem estimation of a priori bounds
  • 相关文献

参考文献15

  • 1Il'in V.A.,Moiseev E.I.,Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator,J.Differential Equations,1987,23:803- 810.
  • 2Il'in V.A.,Moiseev E.I.,Nonlocal boundary value problems of the second kind for a Sturm Liouville operator,J.Differential Equations,1987,23:979-987.
  • 3Gupta C.,A second order m-point boundary value problem at resonance,Nonlinear Analysis,TMA,1995,24(10):1483-1489.
  • 4Gupta C.,Solvability of a multiple boundary value problem at resonance,Results Math.,1995,28:270-276.
  • 5Gupta C.,Existence theorems for a second order m-point boundary value problem at resonance,Int.J.Math.Sci.,1995,18:705 710.
  • 6O'Regan D.,Existence theory for nonlinear ordinary differential equations,Dordrecht:Kluwer Academic Publisher,1997.
  • 7Ma R.Y.,Existence theorems for second order m-point boundary value problems,J.Math.Anal.Appl.,1997,211:545-555.
  • 8Gupta C.,A Dirichlet type multi point boundary value problem for second order ordinary differential equations,Nonlinear Anal.1996,26:925-931.
  • 9Karakostas G.L.and Tsamatos P.Ch.,On a nonlocal boundary value problem at resonance,J.Math.Anal.Appl.,2001,259:209-218.
  • 10Przeradzki B.and Stanczy R.,Solvability of m-point boundary value problems at resonance,J.Math.Anal.Appl.,2001,264:253-261.

同被引文献72

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部