摘要
本文讨论了实Banach*代数的Jordan结构.主要结果:第一部分指出映射到 *-半单实Banach*代数上的Jordan*同态是连续的,且其核空间是闭*理想;由映射到交换实Banach*代数上的Jordan*同态诱导的因子代数也是交换的.第二部分介绍了两个不同的锥,并讨论了他们间的关系.另外,我们得到了关于实Banach*代数*- 根基的一个新的刻画.本文是Satish Shirali的工作的实化.
In this paper, the Jordan structure of real Banach* algebras is discussed. In part one, the results are that the continuity of a Jordan. homomorphism T of A1 onto A2, where A2 is* semi-simple, is automatic, the kernel is a closed * ideal ,and if A2 is commutative, then the factor algebra A1/ker (T) is also commutative. In part two, two different cones of a real Banach* algebra are introduced, and their relation is studied. Moreover, we obtain a new characterization of the .*-radical of a real Banach* algebra. This paper is thereal counterpart of Satish Shirali's work in the complex case.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2006年第3期699-702,共4页
Acta Mathematica Sinica:Chinese Series
基金
北京市自然科学基金(1022004)北京市教委基金北京市委组织部优秀人才专项经费华北电力大学(北京)博士科学基金