摘要
In this paper, the dynamics of liquid sloshing in a rectangular tank under low gravity was investigated. The basic frequencies and the velocity potentials of sloshing of liquid were obtained by expansion of the Fourier series. The characteristics of force and moment of the liquid acting on a rectangular tank were analyzed. The equivalent mechanical models of spring-vibrator-damper of sloshing of liquid were established with mechanical equivalent principle and numerical results were given. The numerical results show that the equivalent sloshing mass increases with the increase of gravity, and that the basic frequency and the equivalent sloshing mass increase with the increase of the liquid depth.
In this paper, the dynamics of liquid sloshing in a rectangular tank under low gravity was investigated. The basic frequencies and the velocity potentials of sloshing of liquid were obtained by expansion of the Fourier series. The characteristics of force and moment of the liquid acting on a rectangular tank were analyzed. The equivalent mechanical models of spring-vibrator-damper of sloshing of liquid were established with mechanical equivalent principle and numerical results were given. The numerical results show that the equivalent sloshing mass increases with the increase of gravity, and that the basic frequency and the equivalent sloshing mass increase with the increase of the liquid depth.
基金
Project supported by the Scientific Research Foundation of Anhui (Grant No:00021090) and the Natural Science Foundation of Jiansu Higher Education (Grant No:02KJD13004).