摘要
The effects of the Born repulsive force on the stability and dynamics of ultra-thin slipping films under the influences of intermolecular forces are investigated with bifurcation theory and numerical simulation. Results show that the repulsive force has a stabilizing effect on the development of perturbations, and can suppress the rupture process induced by the van der Waals attractive force. Although slippage will enhance the growth of disturbances, it does not have influence on the linear cutoff wave number and the final shape of the film thickness as time approaches to infinity.
The effects of the Born repulsive force on the stability and dynamics of ultra-thin slipping films under the influences of intermolecular forces are investigated with bifurcation theory and numerical simulation. Results show that the repulsive force has a stabilizing effect on the development of perturbations, and can suppress the rupture process induced by the van der Waals attractive force. Although slippage will enhance the growth of disturbances, it does not have influence on the linear cutoff wave number and the final shape of the film thickness as time approaches to infinity.
基金
Project supported by the National Natural Science Foundation of China (Grant No:10472062 ) and Shanghai Leading Academic Discipline Project (Grant No: Y0103 ).