摘要
首先研究一类单输入非仿射非线性系统的逆最优控制问题,其代价泛函为非线性-非二次型,设计出一族参数化的状态反馈逆最优控制器;然后讨论当该系统为耗散系统时,在供给率为二次型的耗散性理论框架下,给出使系统渐近稳定的李雅普诺夫函数和镇定控制律,并通过适当选取代价泛函中的参数,使得李雅普诺夫函数也是最优值函数,进而揭示出耗散系统在线性输出反馈意义下稳定性与最优性之间的等价关系.
The inverse optimal control problem of a class of single-input non-affine nonlinear systems with nonlinear- nonquadratic cost functional is addressed. A family of parameterized controllers are designed. When the system is dissipative, in the framework of dissipativity theory with quadratic supply rates, the Lyapunov function and the stabilizing control law that provide asymptotical stability of the closed-loop system are derived. The Lyapunov function is the optimal value function by choosing appropriate parameters of the cost functional. The equivalent relationship between stability and optimality of nonlinear dissipative systems is exposed in the sense of linear output feedback control.
出处
《控制与决策》
EI
CSCD
北大核心
2006年第5期555-558,共4页
Control and Decision
基金
南京理工大学青年发展基金项目(AB96037)
关键词
非线性系统
逆最优控制
耗散性
输出反馈
渐近稳定性
Nonlinear systems
Inverse optimal control
Dissipativity
Output feedback
Asymptotical stability