期刊文献+

磷酸铁锂性能改性的研究 被引量:2

The effect of carbon adding method on the performance of LiFePO_4 synthesized by aqueous precipitation and carbothermal reduction
下载PDF
导出
摘要 以FeSO4·7H2O、NH4H2PO4和H2O2为初始原料,通过液相沉淀法制得前驱体FePO4,然后通过碳热还原制得LiFePO4。我们采用两种加碳方式:a、先制得FePO4,然后加炭黑混合高温合成LiFePO4;b、先把炭黑分散在液相中,然后通过液相沉淀制得含碳的FePO4,再高温合成LiFePO4。SEM(扫描电子显微镜)分析表明:方法b制备的FePO4颗粒比方法a制备的FePO4颗粒细小。在其它条件相同的情况下方法b合成的LiFePO4的电化学性能要优于方法a合成的电化学性能。采用方法b于560℃煅烧12h制备的LiFePO4在0.1C放电倍率下其比容量为149mAh/g,而当放电倍率达到1C时,放电比容量为124mAh/g,且具有良好的循环性能。 Two samples of LiFeP4 were synthesized with different adding methods for carbon. For the first method, carbon is mixed with FePO4 which was prepared by aqueous precipitation of FePO4 from FeSO4·7 H2O and NH4H2PO4 with hydrogen peroxide as the oxidizing agent, then LiFePO4 is synthesized by carbothermal reduction. For the second method, carbon is mixed with FePO4 in liquid during the process of aqueous precipitation, and then LiFePO4 is synthesized with the same condition. It was showed by SEM ( scanning electronic microscopy ) that the particle size of FePO4 prepared by the second method is obvious smaller than that of the first one. The electrochemical second method was much better than that of the first one, which performance of LiFePO4 synthesized at 560℃ for 12 h by the delivered discharge capacity of 149 mAh/g at 0.1 C rate, 124 mAh/g at 1 C rate and exhibited satisfactory capacity retention.
出处 《电源技术》 CAS CSCD 北大核心 2006年第5期376-379,共4页 Chinese Journal of Power Sources
基金 国家自然科学基金项目(50302016)
关键词 锂离子蓄电池 正极材料 LIFEPO4 液相沉淀 碳热还原 lithium ion batteries cathode materials LiFePO4 aqueous precipitation carbothermal reduction
  • 相关文献

参考文献22

  • 1PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B.Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. J Electrochem Soc, 1997, 144:1 188-1 194.
  • 2ANNA S A, BEATA K, LENNART H, et al. Lithium extraction/insertion in LiFePO4: an X-ray diffraction and mossbauer spectroscopy study[J]. Solid State Ionics, 2000, 133 : 41-52.
  • 3MACNEIL D D, LU Z, CHEN Z, et al. A comparison of electrode/electrolyte reaction at elevated temperature for various Li-ion battery cathodes[J]. J Power Sour, 2002, 108 : 8-14.
  • 4TAKAHASHI M, TOBISHIMA S, TAKEI K, et al. Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries[J]. Solid State Ionics ,2002, 148 : 283-289.
  • 5PROSINI P P LIST M, SCACCIA S, et al.Synthesis and characterization of amorphous hydrated FePO4 and Its electrode performance in lithium batteries[J]. J Electrochem Soc, 2002,149:A297- A301.
  • 6PROSINI P P,LIST M,ZANE D.Determination of the chemical diffu-sion coefficient of lithium in LiFePO4[J].Solid State Ionics,2002,148: 45-51.
  • 7RISSOULI K,BENKHOUJA K,RAMOS-BARRADO J R,et al,Electrical conductivity in lithium orthophosphates [J]. Materials Science and Engineering, 2003, B98:185 -189.
  • 8ZHOU F, KANG K, MAXISCH T et al. The electronic structure and band gap of LiFePO4 and LiMnPO4[J]. Solid State Communications, 2004,132:181-186.
  • 9YAMADA A, CHUNG S C, HINOKUMA K. Optimized LiFePO4 for lithium battery cathodes[J]. J Electrochem Soc, 2001, 148:A224-A229.
  • 10ZANE D, CAREWSKA M, SCACCIA S, et al. Factor affecting rate performance of undoped LiFePO4 [J]. Electrochimica Acta,2004, 49:4 259-4 271.

同被引文献37

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部