摘要
In this paper, on the basis of the logarithmic barrier function and KKT conditions, we propose a combined homotopy infeasible interior-point method (CHIIP) for convex nonlinear programming problems. For any convex nonlinear programming, without strict convexity for the logarithmic barrier function, we get different solutions of the convex programming in different cases by CHIIP method.
In this paper, on the basis of the logarithmic barrier function and KKT conditions, we propose a combined homotopy infeasible interior-point method (CHIIP) for convex nonlinear programming problems. For any convex nonlinear programming, without strict convexity for the logarithmic barrier function, we get different solutions of the convex programming in different cases by CHIIP method.