摘要
岩土工程优化反分析本质上看是一个典型的复杂非线性函数优化问题,采用全局优化算法是解决这个问题的理想途径,但由于优化反分析中多次调用正分析的特点使得整个算法的计算效率很低。为了提高优化反分析的计算效率,把一种计算效率更高的新型仿生算法——粒子群优化引入岩土工程反分析领域,提高反分析的计算效率。在此基础上,结合有限元数值分析技术,提出了一种新的岩土工程优化反分析算法——粒子群优化反分析。并通过一个简单算例验证了该法的有效性。
The back analysis in geotechnical engineering is a typical complicated nonlinear function optimization problem. To solve this problem, the global optimization algorithm is a very good method. But for the using FEM for many times in its process, the efficiency of this algorithm is low. In order to overcome the defect of those optimization methods, a new algorithm, particle swarm optimization(PSO), is proposed. Combining this algorithm with FEM, a new back analysis algorithm is proposed. Through a simple example, the proposed algorithm is verified; and the results show that this new algorithm is a very good back analysis method and its efficiency is very good.
出处
《岩土力学》
EI
CAS
CSCD
北大核心
2006年第5期795-798,共4页
Rock and Soil Mechanics
基金
国家自然科学基金项目(No.50309014)
湖北省教育厅重点科研课题资助
关键词
优化反分析
全局优化算法
粒子群优化
optimization back analysis
global optimization method
particle swarm optimization