期刊文献+

Mycielski图的循环色数(英文) 被引量:3

CIRCULAR CHROMATIC NUMBER FOR MYCIELSKI GRAPHS
下载PDF
导出
摘要 通过引入一类点集划分的概念,研究了Mylielski图循环染色的性质,证明了当完全图的点数足够大时,它的Mycielski图的循环色数与其点色数相等. In this paper, based on introducing a special kind of partition of the vertex set of Mycielski graphs and some new concepts, the characters of the circular coloring of Mycielski graphs are analyzed. These characters are then employed to show that the circular chromatic number of Mycielski graph of complete graphs equals to its chromatic number when the order of complete graph is big enough.
作者 刘红美
机构地区 三峡大学理学院
出处 《数学杂志》 CSCD 北大核心 2006年第3期255-260,共6页 Journal of Mathematics
基金 Supported by the Foundation of Natural Science of China(10371048)and theFoundation of Three Gorges University.
关键词 循环色数 MYCIELSKI图 色数 circular chromatic number Mycielski graph chromatic number
  • 相关文献

参考文献1

二级参考文献5

  • 1Vince A. Star chromatic number. J. Graph Theory, 1988, 12:551-559.
  • 2Zhu X. Star chromatic number and products of graphs. J. Graph Theory, 1992, 16:557-569.
  • 3Genghua Fan. Circular chromatic number and Mycielski graph. Combinatorica, to appear.
  • 4Chang G J, Huang L, Zhu X. The circular chromatic number of Mycielski′s graphs. Discrete Mathematics, 1999, 205:23-27.
  • 5Hossein Hajiabolhassan, Xuding Zhu. Mycielski′s graph with circular chromatic number equal chromatic number. J. Graph Theory, 2003, 44:106-115.

共引文献3

同被引文献14

  • 1王治文,张忠辅,闫丽宏.P_m∨P_n的点可区别边色数[J].兰州大学学报(自然科学版),2005,41(6):100-101. 被引量:7
  • 2田双亮,陈萍.若干积图的点可区别边染色[J].山东大学学报(理学版),2006,41(4):53-56. 被引量:5
  • 3Bondy J A,Murty U S R. Graph theory with application[M]. New York: The Macmillan Press Ltd., 1976.
  • 4Favaron O,Li H,Schelp R H. Strong edge coloring of graphs[J]. Discrete Mathematics. 1996,159(13):103-110.
  • 5Burris A C,Schelp R H. Vertex-distinguishing proper edge-doloring[J]. J. Graph Theory,1997,26(2): 73-82.
  • 6Bazgan C,Harkat-Benhamdine A,Li H,et al. On the vertex-distinguishing proper edge-coloring[J]. J. Combin. Theory Ser. B,1999,75(2): 288-301.
  • 7Balister P N,Riordan O M,Schel P R H. Vertex-distinguishing edge colorings of graphs[J]. Graph Theory,2003,(42): 5-109.
  • 8Zhang Zhongfu,Liu Linzhong,Wang Jianfang. Adjacent strong edge colorig of graph[J]. Applied Mathematics Letters,2002,15(5): 623-626.
  • 9Balister P N,Bollobas B,Shelp R H. Vertex-distinguishing coloring of graph with ?(G) = 2[J]. Discrete Mathematics,2002,252(2): 17-29.
  • 10Wittmann P. Vertex-distinguishing edge-coloring of 2-regular graphs[J]. Discrete Mathematics,1997, (79): 265-277.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部