期刊文献+

等周不等式与Bol-Fujiwara定理 被引量:4

THE ISOPERIMETRIC INEQUALITY AND THE BOL-FUJIWARA THEOREM
下载PDF
导出
摘要 本文研究著名的Bol-Fujiwara定理.利用积分几何方法和经典的等周不等式,得到了Bol-Fujiwara定理的一个推广(定理1),以及推广了的Bol-Fujiwara定理的逆定理(定理2). In this paper, we investigate the known Bol-Fujiwara theorem. We obtain a generalized Bol-Fujiwara theorem (Theorem 1) and the reverse theorem (Theorem 2) of the generalized Bol-Fujiwara theorem by method of integral geometry and the classical isoperimetric inequality.
作者 何刚
出处 《数学杂志》 CSCD 北大核心 2006年第3期309-311,共3页 Journal of Mathematics
基金 贵州科技人才省长重点基金资助项目
关键词 等周不等式 凸集 测度 曲率 domain isoperimetric inequality convex set measure curvature
  • 相关文献

参考文献6

  • 1Goodey P.,Woodcock M.Intersection on Convex Bodies with Their Translations[M].The Geometric Vein,Springer Verlay,New york,1981.
  • 2Ren D.,Topics in Integral Geometry[M].World Scientitic,Singapore,1994.
  • 3Santalo L.,Integral Geometry and Geometric Probability[M].Addison-Wesley Publishing Company,1976.
  • 4Zhou J.On Bonnesen-type isperimatric inegualities[A].Proceedings of the 10th International Workshop on Differential Geometry[C].Korea,2005.
  • 5Zhang G.and Zhou J.,Containment measures in integral geometry[M].World Scientific,Singnpore,2005.
  • 6周家足.积分几何与等周不等式[J].贵州师范大学学报(自然科学版),2002,20(2):1-3. 被引量:8

共引文献7

同被引文献32

  • 1LI Ming & ZHOU JiaZu School of Mathematics and Statistics,Southwest University,Chongqing 400715,China.An isoperimetric deficit upper bound of the convex domain in a surface of constant curvature[J].Science China Mathematics,2010,53(8):1941-1946. 被引量:17
  • 2Burago, Y. D. & Zalgaller, V. A. ,Geometric Inequalities[M]. Springer-Verlag, 1988.
  • 3Osserman R. , The isoperimetric inequality[J]. Boull. Amer. Math. Soc. , 1978,84 : 1182-1238.
  • 4Osserman R. , Bonnesen-style isoperimetric inequality[J]. Amer. Math. Monthly, 1979,86 : 1-29.
  • 5Yau S. , Isoperimetric constants and the first eigenvalue of a compact manifold[J]. Ann. Sic. Eeole Norm. Sup. (4 Ser. ),1975,8:487-507.
  • 6Grinberg E. ,Li,S. ,Zhang,G. &Zhou, J. , Integral Geometry and Convexity[M]. World Scientific, Singapore, 2006.
  • 7Zhou, J. & Chen, F. ,The Bonnesen-type inequalities in a plane of constant curvature[J]. Journal of Korean Math. Sco. ,2007,44(6) :1363-1372.
  • 8Zhou,J. , New curvature inequalities for eurves[J]. Inter. J. of Math. , Comp. Sci. & Appl. , 2007, 1 (1-2): 145-147.
  • 9Ren,D. , Topics in Integral Geometry[M]. World Scientific, Singapore, 1994.
  • 10Santalo, L. A., Integral Geometry[M]. World Scientific, Singapore,1994.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部