期刊文献+

基于相关文档池建模的查询扩展 被引量:7

Query Expansion Based on Modeling of Relevant Documents Pool
下载PDF
导出
摘要 在信息检索领域,相关反馈是提高检索性能的有效方法之一。所谓相关反馈,指用户按照一定策略从查找到的相关文档中选择一些和主题相关的词进行查询扩展的技术。本文介绍了概率模型和向量空间模型下的常用查询扩展方法,并提出了一种基于语言模型的相关反馈方法,该方法同时考虑了扩展词应该具备的两个特征,即相关性和覆盖性。在TREC测试集上对这些算法进行了比较,结果表明这种新算法在平均准确率上比传统方法有所提高。 In information retrieval, relevance feedback is an effective way to improve retrieval performance. The goal is to input user's judgement on previous retrieved documents, and to select some terms for query expansion using certain strategy. This paper introduces some common query expansion approaches in relevance feedback based on probability model and vector space model, then a new term selection method is introduced based on language model,which takes into account two features of axpanded terms-" relevance" and" coverage". The evaluation is conducted on the TREC Collection, which shows that our method is better than traditional ones on average precision.
作者 吕碧波 赵军
出处 《中文信息学报》 CSCD 北大核心 2006年第3期78-83,共6页 Journal of Chinese Information Processing
基金 国家自然科学基金资助项目(60372016) 北京市自然科学基金资助项目(4052027)
关键词 计算机应用 中文信息处理 信息检索 相关反馈 查询扩展 computer application Chinese information processing information retrieval relevance feedback query expansion
  • 相关文献

参考文献11

  • 1Ming Zhang,Ruihua Song,Chuan Lin,et al.Expansion-Based Techologies in Finding Relevant and New information[A].TREC 2002[C].
  • 2贺宏朝,何丕廉,高剑峰,黄昌宁.一种基于上下文的中文信息检索查询扩展[J].中文信息学报,2002,16(6):32-37. 被引量:25
  • 3Rocchio,J.J.Relevant Feedback in Information Retrieval[M],Chapter 14,pages 313 -323.PrenticeHall Inc.1971.
  • 4Maron M.E.,Kuhns J.L.On Relevance,Probabilistic Indexing and Information Retrieval[J].Journal of the Association for Computer Machinery.1960,7:216 -244.
  • 5Rocchio J.J.Relevance Feedback in Information Retrieval.In Salton G.(Ed.),The SMART Retrieval System[M].1971.Engle-wood CIifs,Prentice-Hall,Inc.313 -323.
  • 6S E Robertson,S Walker,M Beaulieu.Okapi at TREC-7:automatic ad hoc,filtering,VLC and interactive[A].TREC-7[C].
  • 7S E Robertson and S Walker.Okapi/Keenbow at TREC-8.TREC-8[C].
  • 8S E Robertson and K.Sparck Jones.Relevance Weighting of Searching Terms[J].Journal of the American Society for Information Sciences.1976,27 (3):129-146.
  • 9S E Robertson.On term selection for query expansion.Journal of Documentation[J].1990,46:359-364.
  • 10J.M.Ponte and W.B.Croft.A Language modeling approach to IR[A].In:proceedings of the ACM SIGIR Conference[C].1998,275-281.

二级参考文献7

  • 1[1]Miller G A, et al. Introduction to WordNet:an on-line lexical database, International Journal of Lexicography, 1990,3(4) :235 - 312
  • 2[2]Rila Mandala,Takenobu Tokunaga,Hozumi Tanaka,Combining multiple evidence from different types of thesaurus for query expansion,SIGIR, 1999:191 - 197
  • 3[3]Voorhees E M, Harman D K,The sixth Test REtrieval Conferenee(TREC-6) ,Gaithersburg,NIST, 1998
  • 4[4]Salton G, The SMART retrieval system-experiments in automatic document processing, Prentice Hall, 1971:115 -411
  • 5[5]http: ∥ morph. ldc. upenn. edu/Projects/Chinese
  • 6[6]Gao J F, Nie J Y, Zhang J, et al, Improving query translation for CLIR using statistical models, ACM SIGIR'01 ,New Orleans,2001:96- 104
  • 7[7]David Hull, Using statistical testing in the evaluation of retrieval performance, In Proc. of the 16th ACM/ SIGIR Conference, 1993: 329 - 338

共引文献24

同被引文献52

引证文献7

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部