摘要
在三维Euc lid空间中,若曲线的位置向量总位于密切平面上,则曲线为平面曲线;若曲线的位置向量总位于法平面上,则曲线为球面曲线。本文给出了三维M inkowsk i空间中一种新类型的曲线———从切曲线,它的位置向量总是位于它的从切平面上。在详细研究从切曲线性质的基础上给出了它的分类。
In three dimensional Euclid space. , we know that a curve lies in a plane if its position vector lies in its osculating plane at each point, and lies on a sphere if its position vector lies in its normal plane at each point; In this paper, we mainly discuss the rectifying curves in three dimensional Minkowski space, We characterize such curves and give the classifications of them.
出处
《沈阳航空工业学院学报》
2006年第2期78-79,共2页
Journal of Shenyang Institute of Aeronautical Engineering