期刊文献+

数据流上的复合滑动窗口聚集算法 被引量:2

Aggregate Algorithms of Compound Sliding Window over Data Streams
下载PDF
导出
摘要 基于滑动窗口的聚集查询是数据流研究领域的一个热点问题。在已有的研究工作中,聚集算法都是针对立即执行的连续查询提出的,这些算法均是当数据流新到一个元组立即计算一次聚集结果。而在实际应用中,连续查询有时采取的是周期执行方式。论文针对周期执行的连续查询提出了复合滑动窗口聚集算法,即数据流新到一个元组,将它插入到基本窗口中,当基本窗口被插满时计算一次聚集结果。给出了非增量式和增量式两种算法。理论分析和实验结果表明增量式算法具有较好的性能。 Aggregate based on Sliding window is a focus problem in data stream research.Now all the existing query processing algorithms on data streams are based on the immediately execution continuous queries.Aggregate answers are computed by these algorithms when a tuple comes.But continuous queries are based on the periodically execution manner in fact.This paper presents aggregate algorithms of compound sliding window based on the periodically execution manner.A tuple is inserted into a basic window when it comes.Aggregate answers are computed when a basic window is inserted fully.This paper presents two types algorithms,namely increment and non-increment.Theoretical analysis and experiment results show that incremental algorithms is the most efficient.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第14期187-191,共5页 Computer Engineering and Applications
关键词 数据流 基本窗口 复合滑动窗口 聚集算法 data stream, basic window, compound sliding window, aggregate algorithm
  • 相关文献

参考文献4

  • 1LUKASZ G,TAMER M,OZSU.Data Stream Management Issues-A Survey[R].University of Waterloo Technical Report,2003.
  • 2Zhu Y,Shasha D.StatStream:Statistical Monitoring of Thousands of Data Streams in Real Time[C].In:Proc 28th Int Conf on Very Large Data Bases,Hong Kong,China,2002:358~369.
  • 3钟颖莉.复合滑动窗口连接算法[J].哈尔滨商业大学学报(自然科学版),2004,20(3):294-299. 被引量:1
  • 4Babcock B,Babu S,Datar M et al.Models and Issues in Data Stream Systems[C].In:Proc ACM SIGACT-SIGMOD Symp on Principles of Database Systems,2002:1~16.

二级参考文献8

  • 1LUKASZ G, TAMER M, OZSU. Data Stream Management Issues A Survey[R]. University of Waterloo Technical Report CS-2003-08 April 2003.
  • 2BABCOCKB, BABUS, DAT AR M, et al . Models and Issues in Da ta Stream Systems[C]. In Proc. ACM SIGACT-SIGMOD Symp.on Principles of Database Systems.2002:1-16.
  • 3ZHU Y, SHASHA D. StatSteam: Statistical Monitoring of Thousands of Data Streams in Real Time[C]. In Proc, 28th Int. Conf. on Very Large Data Bases. Hong Kong, China. 2002: 358-369.
  • 4WILSCHUT A N, P M G. Apers: Dataflow Query Execution in a Parallel Main-Memory Environment[C]. PDIS 1991: 68-77.
  • 5HAASPJ, HELLERSTEINJM. Ripple Joins for Online Aggregation [C]. SIGMOD Conference, 1999:287-298.
  • 6KANG J, NAUGHTON J, VIGLAS S. Evaluating Window Joins over Unbounded Streams[C]. ICDE. 2003: 341-352.
  • 7LUKASZ G, TAMER M, OZSU. Processing Sliding Window MultiJoins in Continuous Queries over Data Streams[R]. University of Waterloo Technical Repo rt CS-2003-01, Feb 2003.
  • 8VIGLAS S, NAUGHTON J. Rate-Based Query Optinimtion for Streaming Information Sources[C]. In Proc. ACM Int. Conf. on Management of Data. 2002: 37-48.

同被引文献5

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部