期刊文献+

基于主分量分析与支持向量机的人脸检测研究 被引量:5

Face Detection Based on Principal Component Analysis and Support Vector Machin
下载PDF
导出
摘要 提出一种基于主分量分析和支持向量机的层叠人脸检测算法,用于复杂背景灰度图像的人脸检测。算法首先用主分量分析方法进行粗筛选,滤去大量非人脸窗口,之后用支持向量机对通过的窗口进行分类。由于在通过主分量分析方法所限定的子空间内训练SVM,有效地降低了训练的难度。实验对比数据表明,该方法降低了分类器的训练难度,计算复杂度较低,大大提高了检测速度。 An efficient method of face detection based on Principal Component Analysis (PCA) incorporating with Support Vector Machine (SVM)is proposed in this paper. Firstly, a PCA coarse filter with relatively lower computational complexity is applied to the whole input image to filter out most of the non-face, then follows the SVM classifier to make the final decision, so the detection process is speeded up. The experiment results show that the method can effectively detect faces under complicated background, and the processing time is shorter than using SVM alone.
出处 《微计算机信息》 北大核心 2006年第05Z期285-287,共3页 Control & Automation
基金 河南省杰出青年基金(0412000400) 河南省教育厅自然科学基金(200410464004)
关键词 人脸检测 主分量分析 支持向量机 模式分类 face detection principal component analysis support vector machine pattern classification
  • 相关文献

参考文献6

  • 1陈健,周利莉,史红刚,苏大伟.一种基于Haar小波变换的彩色图像人脸检测方法[J].微计算机信息,2005,21(10S):157-159. 被引量:15
  • 2Moghaddam B, Pentland A, Probabilistic visual learning.for object representation, IEEE Trans Pattern Analysis and Ma-chine Intelligence,1997,19(7):696-710
  • 3Rowley H A,Neural network-based face detection,Carnegie Mellon University, Pittsburgh P A :Technical Report CMU-CS-99-117,1999
  • 4Schneiderman H,A statistical approach to 3D object detection applied to faces and cars,Carnegie Mellon University, Pitts-burgh P A : Technical Report CMU-RI-TR-00-06,2000
  • 5Osuna E,Freund R,Girosi F,Training suppor tvector machines:An application to face detection,In:Proc Computer Vision and Pattern Recognition, Puerto Rico, 1997.130-136
  • 6Viola P,Jones M,Robust real time object detection[A].8th IEEE International Conference on Computer Vision (ICCV),2001,Vancouver, British Columbia[C].USA:IEEE Computer Society Press,2001

二级参考文献5

  • 1Ming-Hsuan Yang, David J.Kriegman, and Narendra Ahuja, Detecting Faces in Images: A Survey, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol 24, No.1, January, 2002.
  • 2Paul Viola, Michael Jones, Rapid object detection using a boosted cascade of simple features.,Conference On Computer Vision and Pattern Recognition, 2001.
  • 3Rein-Lien Hsu, Mohamed Abdel-Mottaleb and Anil K.Jain, Face Detection in Color Images, 2002.
  • 4Paul Viola, Michael Jones, Robust Real-time Object Detection. In Proc.of IEEE Workshop on Statistical and Computational Theories of Vision,2001.
  • 5Constantine P.Papageorgiou, Michael Oren, Tomaso Poggio. A General Framework for Object Detection. International Conference on Computer Vision, January 1998.

共引文献14

同被引文献34

  • 1孙海蓉,付婧娇,王立志,韩璞.一种改进的遗传算法在系统参数辨识中的应用[J].计算机仿真,2005,22(z1):254-257. 被引量:2
  • 2王硕,唐建明,徐荣华.使用PCA及SVM算法进行滚动轴承故障检测[J].机电工程技术,2005,34(2):31-32. 被引量:4
  • 3赵银娣,张良培,李平湘.一种方向Gabor滤波纹理分割算法[J].中国图象图形学报,2006,11(4):504-510. 被引量:26
  • 4Vapnik V 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 5Takagi H.Interactive evolutionary computation:Fusion of the capabilities of EC optimization and human evolution[C].San Diego:Proceedings of the IEEE,2001:1275-1296
  • 6Vapnik V.Statistical learning theory[M].New York:Wiley,1998:85-124
  • 7C.Lin, K.Fan. Triangle-based approach to the detection of human face[J]. Pattern Recognition, 2001, vol.34, 1271 - 1284.
  • 8C.Liu. A.Bayesian discriminating features methods for face detection[J]. IEEE Trans. PAMI, 2003, vol.25, 725 - 740.
  • 9H.A.Rowley, S.Baluja. Neural Network-Based Face Detection[J]. IEEE Trans. PAMI,1998, vol.20,23-28.
  • 10B.Heisele, T.Serre, et.al. Hierarchical classification and feature reduction for fast face detection with support vector machines [J]. Pattern Recognition, 2003, vol.36, 2007 - 2017.

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部