期刊文献+

地球表面热红外辐射的方向效应 被引量:1

Anisotropy of the Thermal Infrared Radiation leaving the Earth's Surface
下载PDF
导出
摘要 利用装有红外辐射计的测角系统研究了自然地表面的红外辐射的方向特征,检测了几种典型自然地表面的地面温度的角度关系.地面亮度温度的测量值随观测天顶角、方位角和太阳位置而改变.草地上的测量反映了植被覆盖典型的方向特征;在粗糙土壤地面上,当太阳辐射方向与观测方向十分接近时,观测到了“热斑效应”;在人造土坡上,测量到较大的亮度温度的角度变化;而在平静水面的观测中,当水面未处于辐射热平衡状态时,在观测天顶角小于60°时,没有观测到发射辐射的角度效应.这些结果表明:地面红外辐射方向特征引起的亮度温度的差异与地形及太阳辐射在地表面上的反射方向效应有关.这些方向变化的特性可导致卫星遥感地面温度反演的偏差. The paper concentrates on investigating anisotropy of the thermal infrared radiation for the natural ground surfaces. The angular dependency of this parameter is examined by using a goniometer system with an infrared radiometer for several different natural surfaces. As expected, the measured brightness temperatures change with view zenith angle, view azimuth angle, and the Sun position. The measurements on the grass surface present a typical anisotropy of the vegetative cover on the ground. Particularly, the "hot spot effect" has been observed on the rough soil surface when the view direction is very close to the sunlit direction. Larger temperature difference was found over the artificial soil slope. When the water surface is not in thermal stabilization and the view zenith angle is less than 60* the angular dependency of water emissivity does not appear in the field measurements. Obviously, the measured differences of brightness temperature produced by anisotropy of thermal radiation are correlated with terrain and the anisotropy of reflection of solar radiation for typical land surfaces. One should be aware of all these variability, in particular when analyzing IR data provided by satellite sensors. Indeed, these may lead to large biases on estimating the surface temperature.
出处 《测试技术学报》 2006年第3期251-256,共6页 Journal of Test and Measurement Technology
关键词 双向发射分布函数 地面辐射的方向效应 地面温度 地面温度遥感检验 红外辐射测量 卫星遥感 bidirectional emission distribution function anisotropy of surface radiation land surfacetemperature validation of LST measurement of infrared radiation satellite remote sensing
  • 相关文献

参考文献10

  • 1Sandmeier S R. Itten K I. A Field Goniometer System (FIGOS) for Acquisition of Hyperspectral BRDF data[J].IEEE Transactions on Geoscience and Remote Sensing, 1999, 37 (2): 978-986.
  • 2Smith J A, Ballard J R. Thermal infrared hot spot and dependence on canopy geometry[J]. Optical Engineering,2001 (40): 1435-1437.
  • 3Kimes D S. Dynamics of Directional Reflectance Factor Distributions for Vegetation Canopies[J]. Appl. Opt. , 1983(22): 1364-1372.
  • 4Camacho-de Coca, Martinez F B, Gilabert M A, et al. Reflectance Anistropy Analysis of Homogeneous Canopies Using Laboratory and HyMap Airborne Data, Remote Sensing for Agriculture, Ecosystems, and Hydrology II,Barcelona 2000[J]. SPIE, 4171: 280-291.
  • 5Mueller C, Hosgood B, Andreoli G. Physical mechanisms in Hyperspectral BRDF Data of Grass and Watercress[J].Remote Sensing of Environment, 1998(66): 222-223.
  • 6Clerbaux N, A Ipe, C Bertrand, S Dewitte, B Nicula and I. Gonzalez, Evidence of azimuthal anisotropy for the thermal infrared radiation leaving the Earth's atmosphere[J]. INT. J. REMOTE SENSING, 2003 (24): 3005-3010.
  • 7KIMES D S. Azimuthal radiometric temperature measurements of wheat canopies[J]. Applied Optics, 1981(20):1119-1121.
  • 8Lipton A E. Effects of Slope and Aspect Variations on Satellite Surface Temperature Retrievals and Mesoscale Analysis in Mountainous Terrain[J]. Applied Meteorology, 1992(31): 255-264.
  • 9Lipton A E, Ward J M. Satellite-View Biases in Retrieved Surface Temperatures in Mountain Areas[J]. Remote Sens. Environ, 1997(60): 92-100.
  • 10Minnis P, Khaiyer M M. Anisotropy of land surface skin temperature derived from satellite data[J], Journal of Applied Meteorology, 2000(39): 1117-1129.

同被引文献6

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部