期刊文献+

气相爆轰波在分叉管中传播现象的数值研究 被引量:5

Numerical Study of Gaseous Detonation Propagation Through a Bifurcated Tube
下载PDF
导出
摘要 数值研究气相爆轰波在分叉管中的传播现象.用二阶附加半隐龙格-库塔法和5阶WENO格式求解二维欧拉方程,用基元反应描述爆轰化学反应过程,得到了密度、压力、温度、典型组元质量分数场及数值胞格结构和爆轰波平均速度.结果表明:气相爆轰波在分叉管中传播,分叉口左尖点的稀疏波导致诱导激波后压力、温度急剧下降,诱导激波和化学反应区分离,爆轰波衰减为爆燃波(即爆轰熄灭).分离后的诱导激波在垂直支管右壁面反射,并导致二次起爆.畸变的诱导激波在水平和垂直支管中均发生马赫反射.分叉口上游均匀胞格区和分叉口附近大胞格区的边界不是直线,其起点通常位于分叉口左尖点上游或恰在左尖点.水平支管中马赫反射三波点迹线始于右尖点下游.分叉口左尖点附近的流场中出现了复杂的旋涡结构、未反应区及激波与旋涡作用.旋涡加速了未反应区的化学反应速率.反射激波与旋涡作用并使旋涡破碎.反射激波与未反应区作用,加速其反应消耗,并形成一个内嵌的射流.数值计算得到的波系演变和胞格结构与实验定性一致. Gaseous detonation propagation through a bifurcated tube was numerically investigated. A 2^nd additive semi-implicit Runge-Kutta method and a 5^th order WENO scheme were used to solve two-dimensional reactive Euler equations. A detailed chemical reaction model was utilized to describe the heat release of detonation. The contours of density, pressure, temperature, species OH mass fraction, the computed cellular pattern and the traveling speed of detonation were obtained. The results show that, influenced by the rarefaction waves from the left sharp comer, the reaction zone is separated from the leading shock. Then, the detonation is degenerated into the deflagration. The winkled reaction front can be clearly identified in numerical schlieren and temperature contours. Re-initiation is induced by the leading shock reflection on the right wall in the vertical branch. Mach reflection of disturbed detonation occurs in both vertical and horizontal branches. The boundary between regions of uniform and larger cells is not a straight line ; it doesn' t exactly start at the left sharp comer and is usually upstream of the left sharp comer. The triple-point trajectory characterizing Mach reflection locates downstream of the right comer in the horizontal branch. Complex structures of vortices, the unreacted region, and shock-vortex interaction are observed in flow field around the left comer. Vortices accelerate reaction rates of the unreacted region. The reflected shock interacts with vortices and breaks them into pieces. Reflected shock also accelerates the consumption of the unreacted region and then an embedded jet is produced. The evolution of detonation wave and computed cellular pattern are qualitatively consistent with those from experiments.
出处 《计算物理》 EI CSCD 北大核心 2006年第3期317-324,共8页 Chinese Journal of Computational Physics
基金 国家自然科学基金(10172083) 中国工程物理研究院联合基金(10076018) 北京理工大学爆炸科学与技术国家重点实验室开放基金(KFJJ03_2))资助项目
关键词 气相爆轰 基元反应 马赫反射 二次起爆 数值模拟 gaseous detonation detailed chemical reaction model Mach reflection re-initiation numerical simulation
  • 相关文献

参考文献9

  • 1Fickett W,Davis W C.Detonation[M].University of California Press,1979.1-12,291-363.
  • 2Jones D A,Oran E S,Sichel M.Reignition of detonation by reflected shocks[J].Shock Waves,1995,5:47-57.
  • 3Li C P,Kailasanath K.Detonation transmission and transition in channels of different sizes[A].Proceedings of the Combustion Institute,2000,28:603-609.
  • 4Oran E S,Young T R,Boris J P,Cohen A.Weakand strong ignition.I.Numerical simulation of shock tube experiments[J].J Combustion and Flame,1982,48:135-148.
  • 5Zhong Xiaolin.Additive semi-implicit Runge-Kutta methods for computing high-speed nonequilibrium reactive flows[J].Journal of Computational Physics,1996,128:19-31.
  • 6Sbu Chiwang.Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws[R].ICASE Report 97-65,1997.
  • 7王昌建,郭长铭,徐胜利,张寒虹.气相爆轰在T形管中传播现象的实验研究[J].力学学报,2004,36(1):16-23. 被引量:10
  • 8Gamezo V N,Desbordes D,Oran E S.Formation and evolution of two-dimensional cellular detonations[J].Combustion and Flame,1999,116:154-165.
  • 9Sharpe G J.Transverse waves in numerical simulations of cellular detonations[J].Journal of Fluid Mechanics,2001,447:31-51.

二级参考文献14

  • 1赵同虎,于川,韩立石,孙承纬.硝基甲烷中爆轰波绕射的实验研究和数值模拟[J].爆炸与冲击,1994,14(2):169-174. 被引量:3
  • 2Whitham GB. A new approach to problems of shock dynamics. J Fluid Mech, 1957,2:145~171
  • 3Zeldvich YB, Kogarko SM, Simonov MN. An experimental investigation of spherical detonation in gases. Soviet Phys Tech Phys, 1956,1:1689~1713
  • 4Mitrovanov VV, Soloukhin RI. The diffraction of multifront detonation waves. Soviet Phys Dokl, 1964,9:1055~1058
  • 5Edwards DH, Thomas GO, Nettleton MA. The diffraction of a planar detonation wave at an abrupt area change. J Fluid Mech, 1979,95:79~96
  • 6Thomas GO, Li R, Williams. Detonation with wedges and bends. Shock Waves, 2002,11:481~492
  • 7Bartlma F, Schroder K. The diffraction of a plane detonation wave at a convex corner. Combust and Flame, 1986,66:237~248
  • 8Li H, Ben-Dor G. A modified CCW theory for detonation waves. Combustion and Flame,1998,113:1~12
  • 9Guo Changming, Zhang Delang, Xie Wei. The Mach reflection of a detonation based on soot track measurements.Combustion and Flame, 2001,127:2051~2058
  • 10Gordon S, McBride DJ. Computer Program for a Calculation of Complex Chemical Equilibrium Compositions.Rockets Performance, Incident and Reflected Shocks,Chapman-Joudguet Detonations. NASA SP-273, 1971

共引文献9

同被引文献154

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部