期刊文献+

基于CFD的船舶自流冷却系统进水口形式优化 被引量:8

Optimization of the Types of Water Inlets in Marine Scoop Cooling Systems Based on CFD(Computational Fluid Dynamics)
下载PDF
导出
摘要 船舶自流冷却系统进水口的结构对船舶航行和凝汽器冷却效果具有显著影响。本文利用软件Fluent采用标准k-ε模型对船舶自流冷却系统不同形式进水口进行了数值模拟,从流量、航行阻力以及对尾流场的影响等方面分析了不同进水口形式的流动特性。结果表明:相同管径时,直管口能获得较大的流量并且对外流场的影响最小,同时进水口的外伸长度直接影响流量和航行阻力的大小,但是对尾流的影响却是与出水口相耦合,因此进水口的设计应该结合出水口进行。 The structure of water inlets of a marine scoop cooling system has a significant effect on the navigation of ships and the cooling efficiency of condensers.A numerical calculation is conducted for different types of water inlets of marine scoop cooling systems by the use of software Fluent and through the adoption of a standard k-ε model.The flow characteristics of different types of water inlets are analyzed from such aspects as flow rate,navigation drags and the impact of wake flow fields.The results show that with a same tube diameter,the straight tube inlet can provide a relatively large flow rate and cause a minimal effect to the external flow field.Meanwhile,the extended length of the water inlets can directly influence the flow rate and the magnitude of navigation drags.However,the impact to the wake flow is closely related to water outlets.Hence the design of water inlets should be conducted in conjunction with that of water outlets.
出处 《热能动力工程》 EI CAS CSCD 北大核心 2006年第3期239-244,共6页 Journal of Engineering for Thermal Energy and Power
关键词 自流冷却系统 进水口形式 数值模拟 流量 尾流场 scoop cooling system,type of water inlets,numerical simulation,wake flow field
  • 相关文献

参考文献6

二级参考文献38

  • 1[1]SVENNBERG S U. A test on turbulence models for steady flows around ships[A]. Proc. of Gothenburg 2000-A Workshop on Numerical Ship Hydrodynamics[C]. Chalmers U. of Technology,Gothenburg, Sweden,2000.
  • 2[2]DENG G B and VISONNEAU M. Comparison of explicit algebraic stress models and second order turbulence closures for steady flows around the KVLCC2 ship at model and full scales[A]. Proc. of Gothenburg 2000-A Workshop on Numerical Ship Hydrodynamics[C]. Chalmers U. of Technology, Gothenburg, Sweden,2000.
  • 3[3]DENG G B and VISONNEAU M. Evaluation of eddy viscosity and second-moment turbulence closures for steady flows around ships[A]. 21st Symp on Naval Hydro[C]. 1996.
  • 4[4]TAHARA Y and HIMENO Y. Applications of isotropic and anisotropic turbulence models to ship flow computation[J]. J.Kansai Soc. N.A., Japan, 1996,225: 75-91.
  • 5[5]HIRATA N and HINO T. Flow computation around a tanker hull using modified spalart-allmaras model[A]. Proc. of Gothenburg 2000-A Workshop on Numerical Ship Hydrodynamics[C]. Chalmers U. of Technology, Gothenburg, Sweden,2000.
  • 6[6]ZHU M, YOSHIDA O and MIYATA H, AOKI K. Verification of the viscous flow-field simulation for practical hull forms by a finite-volume method[A]. Proc. Sixth Int. Conf. On Numerical Ship Hydrodynamics[C].1993.
  • 7[7]SPALART P and ALLMARAS S. A one-equation turbulence model for aerodynamic flows[R]. Technical Report AIAA-92-0439, American Institute of Aeronautics and Astronautics,1992.
  • 8[8]LAUNDER B E and SPALDING D B. Lectures in Mathematical Models of Turbulence[M].Academic Press, London, England,1972.
  • 9[9]YAKHOT V and ORSZAG S A. Renormalization group analysis of turbulence: I.Basic theory[J]. Journal of Scientific Computing, 1986,1(1):1-51.
  • 10[10]SHIH T H, LIOU W W, SHABBIR A and ZHU J. A newk-? eddy-viscosity model for high Reynolds number turbulent flows-model development and validation[J]. Computers Fluids, 1995,24(3):227-238.

共引文献132

同被引文献22

引证文献8

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部