期刊文献+

通过半傅立叶快速采集弛豫增强磁共振成像研究正常胎儿大脑发育规律 被引量:2

Development of normal fetal brain by MRI with a half-Fourier rapid acquisition with relaxation enhancement sequence
原文传递
导出
摘要 目的 利用半傅立叶(half-Fourier)快速采集弛豫增强(rapid acquisition with relaxation enhancement,RARE)磁共振成像序列分析胎儿大脑的正常发育。方法 用半傅立叶RARE成像方法检查25例12-38孕周的宫内正常胎儿大脑。根据胎龄评估脑回的成熟度、灰白质的分界情况、脑室与脑横径比率和蛛网膜下腔的大小。结果 在12-23孕周,胎儿脑表面光滑,大脑皮层分为2,3层。在24-26孕周,中央沟内见数个小的浅沟,所有胎儿的大脑皮层都可分为未成熟的皮质、中间带和胚胎基质3层。在27-29孕周,脑实质不同区域均可观察到不同程度的脑沟形成,胚胎基质基本消失。从30孕周开始,整个大脑皮层均可见脑沟形成。但是,33孕周之前,脑皮质并未折叠(infolding),岛盖(opercular formation)也未形成。23孕周之前,脑室较大,然后逐渐缩小。在整个孕期内,覆盖于脑皮质表面的蛛网膜下腔轻度扩大,在21-26孕周最明显。结论 半傅立叶RARE MR成像可准确评价胎儿大脑随着孕龄有规律发育成熟过程中的变化。 Objective To evaluate normal maturation of the fetal brain with half-Fourier rapid acquisition with relaxation enhancement (RARE) MRI. Methods The normal brains of 25 fetuses of 12-38 weeks gestational age were examined in utero with half-Fourier RARE imaging. Gyrus maturation, gray and white matter differentiation, ventricle-to-brain diameter ratio, and subarachnoid space size were evaluated with respect to gestafional age. Results At 12-23 weeks, the brain had a smooth surface, and two or three layers were differentiated in the cerebral cortex. At 24-26 weeks, only a few shallow grooves were seen in the central sulcus, and three layers, including the immature cortex, intermediate zone, and germinal matrix, were differentiated in all fetuses. At 27-29 weeks, sulcus formation was observed in various regions of the brain parenchyma, and the germinal matrix became invisible. Sulcation was seen in the whole cerebral cortex from 30 weeks on. However, the cortex did not undergo infolding, and opercular formation was not seen before 33 weeks. At 23 weeks and earlier, the cerebral ventricles were large; thereafter, they gradually became smaller. The subarachnoid space overlying the cortical convexities was slightly dilated at all gestational ages, most markedly at 21-26 weeks. Conclusion Changes in brain maturation proceed through stages in an orderly and predictable fashion and can be evaluated reliably with half-Fourier RARE MRI.
出处 《中华放射学杂志》 CAS CSCD 北大核心 2006年第5期479-484,共6页 Chinese Journal of Radiology
关键词 胎儿 磁共振成像 Fetus Brain Maynetic resonance imaging
  • 相关文献

参考文献24

  • 1Hill MC, Lande IM, Larsen JW. Prenatal diagnosis of fetal anomalies using ultrasound and MRI. Radiol Clin North Am , 1988,26 : 287-307.
  • 2Yamashita Y, Namimoto T, Abe Y, et al. MR imaging of the fetus by a HASTE sequence. AJR, 1997, 168: 513-519.
  • 3Levine D, Hatabu H, Gaa J, et al. Fetal anatomy revealed with fast MR sequences. AJR, 1996, 167: 905-908.
  • 4McCarthy SM, Filly RA, Stark DD, et al. Obstetrical MR imaging:fetal anatomy. Radiology, 1985, 154: 427-432.
  • 5Powell MC, Worthington BS, Bucldey J, et al. Magnetic resonance imaging ( MRI ) in obstetrics. Ⅱ . Fetal anatomy. Br J Obstet Gynaecol, 1988, 95: 38-46.
  • 6Aguirre Vila-Coro A, Dominguez R. Intrauterine diagnosis of hydranencephaly by magnetic resonance. Magn Reson Imaging,1989,7 : 105-107.
  • 7Toma P, Lucigrai G, Ravegnani M, et al. Hydrocephalus and porencephaly: prenatal diagnosis by ultra-sonography and MR imaging. J Comput Assist Tomogr,1990, 14: 843-845.
  • 8Girard NJ, Raybaud CA. In vivo MRI of fetal brain cellular migration. J Comput Assist Tomogr, 1992, 16: 265-267.
  • 9Girard N, Raybaud C, D'Ercole C, et al. In vivo MR imaging of the fetal brain. Neuroradiology, 1993, 6: 431-436.
  • 10D'Ercole C, Girard N, Boubli L, et al. Prenatal diagnosis of fetal cerebral abnormalities by ultrasonography and magnetic resonance imaging. Eur J Obstet Gynecol Reprod Biol, 1993, 50: 77-184.

同被引文献21

  • 1赵连新,王光彬,杨林林,武乐斌,史宏璐,白雪,李慧华.产前MRI在超声诊断胎儿侧脑室扩张中的临床价值[J].中国产前诊断杂志(电子版),2012,4(3):11-15. 被引量:9
  • 2Fong DT, Hong Y, Chan LK, et al. A systematic review on ankle injury and ankle sprain in sports [J]. Sports Med, 2007, 37:73 - 94.
  • 3Ba-Ssalamah A, Schibany N, Puig S, et al. Imaging articular cartilage defects in the ankle joint with 3D fat-suppressed ech- o planar imaging: comparison with conventional 3D fat-sup- pressed gradient echo imaging [J]. Magn Reson Imaging, 2002, 16: 209-216.
  • 4Mugler JP, 3rd, Bao S, Mulkern RV, et al. Optimized sin- gle-slab three-dimensional spin-echo MR imaging of the brain [J]. Radiology, 2000, 216:891- 899.
  • 5Bauer JS, Banerjee S, Henning TD, et al. Fast high-spatial- resolution MRI of the ankle with parallel imaging using GRAPPA at 3 T [J]. AJR, 2007, 189: 240-245.
  • 6Haratz K K, Oliveira P S, Rolo I. C, et al. Fetal cerebral ventri- cle volumetry: comparison between 3D ultrasound and magnetic resonance imaging in fetuses with ventriculomegaly[J]. J Matern Fetal Neonatal Med, 2011, 24(11):1384-1391.
  • 7Harreld J H, Bhore R, Chason D P, et al. Corpus callosum length by gestational age as evaluated by fetal MR imaging[J]. AJNR,2011, 32(3):490-494.
  • 8Isapof A, Kieffer V, Sacco S, et al. Impact of prenatal corpus callosum agenesis diagnosis on pregnancy outcome, evaluation of 155 cases between 2000 and 2006[J]. Arch Pediatr, 2010, 17 (3) : 226-232.
  • 9Doneda C, Parazzini C, Righini A, et al. Early cerebral lesions in cytomegalovirus infection: prenatal MR imaging[J]. Radiology, 2010, 255(2): 613-621.
  • 10Yin S, Na Q, Chen J, et al. Contribution of MRI to detect further anomalies in fetal ventriculomegaly[J]. Fetal Diagn Ther, 2010, 27(1) :20-24.

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部