摘要
The hydrogen storage capacity of (5, 5) single-walled carbon nanotubes (SWNTs) decorated chemically with benzene moieties is studied by using molecular dynamics simulations (MDSs) and density functional theory (DFT) calculations. It is found that benzene molecules colliding on (5, 5) SWNTs at incident energy of 50eV form very stable configurations of benzene moiety adsorption on the wall of SWNTs. The MDSs indicate that when the benzene moiety decorated (5, 5) SWNTs and a pristine (5, 5) SWNT are put in a box in which hydrogen molecules are filled to a pressure of ~26 atm, the hydrogen storage capacity of the benzene moiety decorated (5, 5) SWNT is about 4.7wt.% and that of the pristine (5, 5) SWNT is nearly 3.9wt.%.
The hydrogen storage capacity of (5, 5) single-walled carbon nanotubes (SWNTs) decorated chemically with benzene moieties is studied by using molecular dynamics simulations (MDSs) and density functional theory (DFT) calculations. It is found that benzene molecules colliding on (5, 5) SWNTs at incident energy of 50eV form very stable configurations of benzene moiety adsorption on the wall of SWNTs. The MDSs indicate that when the benzene moiety decorated (5, 5) SWNTs and a pristine (5, 5) SWNT are put in a box in which hydrogen molecules are filled to a pressure of ~26 atm, the hydrogen storage capacity of the benzene moiety decorated (5, 5) SWNT is about 4.7wt.% and that of the pristine (5, 5) SWNT is nearly 3.9wt.%.
基金
Supported by the National Natural Science Foundation of China under Grant Nos 10374059 and 50402017, and the National Basic Research Programme of China under Grant No 2005CB623602.