期刊文献+

Hydrogen Storage in Benzene Moiety Decorated Single-Walled Carbon Nanotubes 被引量:1

Hydrogen Storage in Benzene Moiety Decorated Single-Walled Carbon Nanotubes
下载PDF
导出
摘要 The hydrogen storage capacity of (5, 5) single-walled carbon nanotubes (SWNTs) decorated chemically with benzene moieties is studied by using molecular dynamics simulations (MDSs) and density functional theory (DFT) calculations. It is found that benzene molecules colliding on (5, 5) SWNTs at incident energy of 50eV form very stable configurations of benzene moiety adsorption on the wall of SWNTs. The MDSs indicate that when the benzene moiety decorated (5, 5) SWNTs and a pristine (5, 5) SWNT are put in a box in which hydrogen molecules are filled to a pressure of ~26 atm, the hydrogen storage capacity of the benzene moiety decorated (5, 5) SWNT is about 4.7wt.% and that of the pristine (5, 5) SWNT is nearly 3.9wt.%. The hydrogen storage capacity of (5, 5) single-walled carbon nanotubes (SWNTs) decorated chemically with benzene moieties is studied by using molecular dynamics simulations (MDSs) and density functional theory (DFT) calculations. It is found that benzene molecules colliding on (5, 5) SWNTs at incident energy of 50eV form very stable configurations of benzene moiety adsorption on the wall of SWNTs. The MDSs indicate that when the benzene moiety decorated (5, 5) SWNTs and a pristine (5, 5) SWNT are put in a box in which hydrogen molecules are filled to a pressure of ~26 atm, the hydrogen storage capacity of the benzene moiety decorated (5, 5) SWNT is about 4.7wt.% and that of the pristine (5, 5) SWNT is nearly 3.9wt.%.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2006年第6期1536-1539,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos 10374059 and 50402017, and the National Basic Research Programme of China under Grant No 2005CB623602.
关键词 NANOSTRUCTURES CAPACITY NANOSTRUCTURES CAPACITY
  • 相关文献

参考文献19

  • 1Dillon A C, Jones K M, Bekkedahl T A, Kiang C H, Bethune D S and Heben M J 1997 Nature 386 377.
  • 2Liu C, Fan Y Y, Liu M, Cong H T, Cheng H M and Dresselhaus M S 1999 Science 286 1127.
  • 3Liu C, Yang Q H, Tong Y, Cong H T and Cheng H M 2002 Appl. Phys. Lett. 80 2389.
  • 4Dillon A C, Gennett T, Alleman J L, Jones K M, Parilla P A and Herben M J 2000 Proceedings of the 2000 U.S. DOE/NREL Hydrogen Program Rev (San Ramon, CA).
  • 5Hirscher M, Becher M, Haluska M, Dettaff-Weglikowska U, Quintel A, Duesberg G S, Chio Y M, Downes P, Mulman M, Roth S, Stepanek I and Bernier P 2001 Appl. Phys. A: Mater. Sci. Process 72 129.
  • 6Ritschel M, Uhlemann M, Gutfleisch O, Leonhardt A, Graft A, Taschner Ch and Fink J 2002 Appl. Phys. Lett. 80 2985.
  • 7Tibbetts G G, Meisner G P and Olk C H 2001 Carbon 39 2291.
  • 8Bacsa R, Lanrent C, Morishima R, Suzuki H, and Lag M L 2004 J. Phys. Chem. B 108 12718.
  • 9Lee S M and Lee Y H 2000 Appl. Phys. Lett. 76 2877.
  • 10Li J, Furuta T, Goto H, Ohashi T, Fujiwara Y and Yip S 2003 J. Chem. Phys. 119 2376.

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部