摘要
The p-type microcrystalline silicon (μc-Si:H) on n-type crystalline silicon (c-Si) heterojunction solar cells is fabricated by radio-frequency plasma enhanced chemical vapour deposition (rf-PECVD). The effect of the μc- Si:Hp-layers on the performance of the heterojunction solar cells is investigated. Optimum μc-Si:H p-layer is obtained with hydrogen dil u tion ratio of 99.65 %, rf-power of 0. 08 W/cm^2 , gas phase doping ratio of 0. 125 %, and the p-layer thickness of 15nm. We fabricate μc-Si:H(p)/c-Si(n) heterojunction solar cells without texturing and obtained an efficiency of 13.4%. The comparisons of the solar-cell performances using different surface passivation techniques are discussed.
The p-type microcrystalline silicon (μc-Si:H) on n-type crystalline silicon (c-Si) heterojunction solar cells is fabricated by radio-frequency plasma enhanced chemical vapour deposition (rf-PECVD). The effect of the μc- Si:Hp-layers on the performance of the heterojunction solar cells is investigated. Optimum μc-Si:H p-layer is obtained with hydrogen dil u tion ratio of 99.65 %, rf-power of 0. 08 W/cm^2 , gas phase doping ratio of 0. 125 %, and the p-layer thickness of 15nm. We fabricate μc-Si:H(p)/c-Si(n) heterojunction solar cells without texturing and obtained an efficiency of 13.4%. The comparisons of the solar-cell performances using different surface passivation techniques are discussed.
基金
Supported by the National Basic Research Program of China under Grant No G2000028208, and the Natural Science Foundation of Inner Mongolia of China under Grant No 200308020104.