期刊文献+

带不同局部动态模型的时变系统信息融合Kalman估值器 被引量:7

Information Fusion Kalman Estimators for Time-varying Systems with Different Local Dynamic Models
下载PDF
导出
摘要 对于带不同局部动态模型和多传感器的的线性离散时变随机控制系统,应用Kalman滤波方法,基于Riccati方程,根据按矩阵加权、按对角阵加权和按标量加权三种最优融合规则,提出了系统公共状态的三种最优加权融合Kalman估值器,可统一处理融合滤波、预报和平滑问题。为计算最优加权,提出计算局部估计误差互协方差公式。它们可用于信号融合滤波。用增广状态方法,将待估信号看成子系统公共状态,提出了信号多传感器信息融合滤波的一种设计方法。 For linear discrete time-varying stochastic control systems with different local dynamic models, using the Kalman filtering method, based on the Riccati equations, according to three optimal fusion rules weighted by matrices, diagonal matrices, and scalars, the three optimal weighted fusion Kalman estimators are presented for the common state. They can handle the fused filtering, prediction, and smoothing problems in a unified framework. In order to compute the optimal weights, the formulas of computing the local estimation error cross-covariances are proposed. They can be applied to signal fused filtering. By the augmented state approach, the signal to be estimated can be viewed as a ammon state of the subsystemes, so that a design approach is presented of the muhisensor information fusion filtering for the time-varying signals.
出处 《科学技术与工程》 2006年第11期1462-1466,共5页 Science Technology and Engineering
基金 国家自然科学基金(60374026) 黑龙江大学自动控制重点实验室基金资助
关键词 时变系统 不同局部动态模型 多传感器信息融合 加权状态融合 KALMAN滤波器 信号融合滤波器 time-varying system different local dynamic models multisensor information fusion weighted state fusion Kalman filter signal fusion filter
  • 相关文献

参考文献3

  • 1[1]Deng Zili,Gao Yuan,Mao Lin,Li Yun,Hao Gang.New approach to information fusion steady-state Kalman filtering.Automatica,2005;41 (10):1695-1707
  • 2[2]Sun Shuli,Deng Zili.Multi-sensor optimal information fusion Kalman filter.Automatica,2004 ;40 (6):1017-1023
  • 3[3]Sun Shuli.Distributed optimal component fusion weighted by scalars for fixed-lag Kalman smoother.Automatica,2005 ;41 (12):2153-2159

同被引文献32

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部