期刊文献+

利用分数低阶空时矩阵进行冲击噪声环境下的DOA估计 被引量:14

DOA Estimation in Impulsive Noise Environments Using Fractional Lower Order Spatial-Temporal Matrix
下载PDF
导出
摘要 研究冲击噪声环境下的信号DOA估计问题。在对称α稳定(SαS:Symmetric-αstable)分布冲击噪声假设下,定义了一个阵列接收数据的广义分数低阶空时矩阵。理论分析表明,对广义分数低阶空时矩阵进行奇异值分解可获得噪声子空间估计。与信号空间DOA估计技术相结合,提出一种新的基于信号空间分解的DOA估计算法。该算法在低信噪比下对强冲击噪声具有更好的抑制作用。计算机仿真证明了算法的有效性。 This paper is concerned with the direction of arrival estimation problem in impulsive noise modeled as symmetric a stable (SaS) distribution. A generalized fractinnal lower order spatial- temporal matrix (FSTM) of the array measurements is defined. Theoretical analysis shows that the matrix FSTM can be used to obtain the estimation of noise subspace. Then a new DOA estimation algorithm using subspaee-based techniques is proposed. The algorithm is much efficient to restrain the strong impulsive noise for low signal-to-noise ratio (SNR) ease. Simulation results demonstrate the effectiveness of the proposed algorithm.
作者 何劲 刘中
出处 《航空学报》 EI CAS CSCD 北大核心 2006年第1期104-108,共5页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(60472059)资助项目
关键词 DOA估计 冲击噪声 对称α稳定分布 分数低阶空时矩阵 奇异值分解 MUSIC算法 direction-of-arrival estirnation impulsive noise symmetric a stable distribution fractional lower order spatial temporal matrix singular value decomposition MUSIC algorithm
  • 相关文献

参考文献10

  • 1Krim H,Viberg M.Two decades of array signal processing research:the parametric approach[J].IEEE Signal Processing Mag,1996,13(4):67-94.
  • 2Shao M,Nikias C L.Signal processing with alpha-stable distributions and applications[M].New York:Wiley,1995.
  • 3Tsakalides P,Nikias C L.Maximum likelihood localization of sources in noise modeled as a stable process[J].IEEE Trans Signal Processing,1995,43:2700-2713.
  • 4Tsakalides P,Nikias C L.The robust covariation-based MUSIC (ROC-MUSIC) algorithm for bearing estimation in impulsive noise environments[J].IEEE Trans Signal Processing,1996,44:1623-1633.
  • 5Liu T H,Mendel J M.A subspace-based direction finding algorithm using fractional lower order statistics[J].IEEE Trans Signal Processing,2001,49:1605 1613.
  • 6吕泽均,肖先赐.基于分数阶矩的测向算法研究[J].电波科学学报,2002,17(6):561-564. 被引量:10
  • 7吕泽均,肖先赐.在冲击噪声环境中基于子空间的测向算法研究[J].航空学报,2003,24(2):174-177. 被引量:10
  • 8Shao M,Nikias C L.Signal processing with fractional low order moments:stable processes and their application[J].Proceedings of the IEEE,1993,81(7):986-1010.
  • 9Belouchrani A,Amin M,Abed-Meraim K.Direction finding in correlated noise fields based on joint block-diagonal ization of spatio-temporal correlation matrices[J].IEEE Signal Processing Letters,1997,4(9):266-268.
  • 10Schmidt R O.Multiple emitter location and signal parameter estimation[J].IEEE Trans Antennas Propagat,1986,AP-34:276-280.

二级参考文献15

  • 1[1]Schmidt R O. Multiple emitter location and signal parameter estimation[J]. IEEE Trans on SP, 1986, 34(3): 267-280.
  • 2[2]Roy R, Kailath T. ESPRIT-estimation of signal parameter via rotational invariance tehniques[J]. IEEE Trans on SP,1989, 37(7):984-899.
  • 3[3]Jerry E J, Dogan M C. Applications of cumulants to array processing-part Ⅳ: direction finding in coherent signals case[J]. IEEE Trans on SP, 1997,45(9): 2265-2275.
  • 4[4]Tsakalides P, Nikias C L. The robust covariation-based MU-SIC(ROC-MUSIC) Algorithm for bearing estimation in impulsive noise environments[J]. IEEE Trans on SP, 1996, 44(7):1623-1633.
  • 5[5]Liu T H, Mendel J M. A subspace-based direction finding algorithm using fractional lower order statistics[J]. IEEE Transon SP, 2001, 49(8): 1605-1613.
  • 6[6]Panagiotis G G, Panagiotis T. Alpha-stable modeling of noise and robust time-delay estimation in the presence of impulsive noise[J]. IEEE Trans on Multimedia, 1999, 1(3):291-301.
  • 7[7]Tsihrintzis G A, NiKias C L. Performance of optimum and suboptimum receivers in the presence of impulsive noise modeled as an alpha-stable process[J]. IEEE Trans on Comm, 1995, 43(2/3/4): 904-913.
  • 8[8]Xu G, Silverstein S D. Beamspace ESPRIT[J]. IEEE Trans on SP, 1994,42(2):349-355.
  • 9R O Schmidt. Mutiple emitter location and signal parameter estimation[J]. IEEE Trans. Antanna Propagat., Mar. 1986, AP(34): 276~280.
  • 10R roy and T Kailath. ESPRIT-estimation of signal parameter via rotational invairance techques[J]. IEEE Trans. Signal Processing, July 1989,37(7): 984~99.

共引文献15

同被引文献96

引证文献14

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部