期刊文献+

基于合并思想和竞争学习思想的聚类新算法 被引量:3

Novel clustering algorithm based on combination idea and competitive learning idea
下载PDF
导出
摘要 针对分类目的准确标识出有样本分布的空间区域位置,没有类分布先验知识,类数不能预先确定的情况,提出一种聚类新方法。该算法的初始类心为所有样本点,竞争获胜规则由最近邻改为阈值,竞争过程中同时进行类心合并。在样本数量较大时,提出网格中心法和网格采样法降低计算复杂度。实验结果证实该算法对初始设置和参数不敏感,且结束条件容易确定,在一定程度上聚类效果优于其它算法。 A new cluster method is presented, which is aimed at accurately identifying the location of the area with example points, without transcendental knowledge of class distribution and the number of class. In this method, initial centers of class are all the example points, and the competitive win rule is a threshold instead of the nearest neighborhood, and the combination of class centers is carded during the competing process. The method of grid center and method of grid sample are presented to lower the calculation complexity when the number of points is huge. The experimental result proves it's insensitive to initial conditions and parameters, and the end conditions are easy to be defined. It's also proves the performance of this algorithm is superior to others in a certain extent.
作者 段敏 张锡恩
出处 《计算机工程与设计》 CSCD 北大核心 2006年第9期1656-1659,共4页 Computer Engineering and Design
关键词 合并 竞争学习 样本空间 位置标识 网格中心法 网格采样法 combination competitive learning example points space location identification method of grid center method of grid sample
  • 相关文献

参考文献5

  • 1Sergios Theodoridis,Konstantinos Koutroumbas.模式识别[M].第2版.北京:电子工业出版社,2004.
  • 2Rakesh A,Johanners G,Dimitrios G,et al.Automatic subspace clustering of high dimensional data for data mining applications[A].Snodgrass RT,Winslett M.proc of the 1994 ACM SIGMOD Int,Conf on Management of Data[C].Minneapolis:ACM Press,1994.94-105.
  • 3Kohonen T.Self-organization and associative memory[M].3rd Edition.Berlin:Springer-Verlag,1989.
  • 4S C Ahalt,A K Krishmamurty,P Chen,D E Melton.Competitive learning algorithms for vector quantization[C].Neural Networks,1990.277-191.
  • 5L Xu,A Krzyzak,E Oja.Rival penalized competitive learning for clustering analysis,RBF net,and curve detection[J].IEEE Transactions on neural neteorks,1993,(4):636-649.

共引文献3

同被引文献29

  • 1周水庚,周傲英,金文,范晔,钱卫宁.FDBSCAN:一种快速 DBSCAN算法(英文)[J].软件学报,2000,11(6):735-744. 被引量:42
  • 2张惟皎,刘春煌,李芳玉.聚类质量的评价方法[J].计算机工程,2005,31(20):10-12. 被引量:60
  • 3杨黎刚,苏宏业,张英,褚健.基于SOM聚类的数据挖掘方法及其应用研究[J].计算机工程与科学,2007,29(8):133-136. 被引量:32
  • 4王文龙,刘湘宁..ASP.NET技术内幕[M]..北京:人民邮电出版社,,2002....
  • 5周鸣杨.详解TREEVIEW控件[EB/OL].1999-12.http://media.ccidnet.com/media/ciw/881/b1001.htm.
  • 6毛尧飞..NET数据服务C#高级编程[M].北京:清华大学出版社,2002.
  • 7王毅,杨浩.ASP.NET1.0高级编程[M].北京:清华大学出版社,2002.
  • 8He X C, Yung N I4 C. Corner detector based on global and local curvature properties [ J ]. Optical Engineering, 2008,47 ( 5 ) :057008/1 - 12.
  • 9Kim S. Robust corner detection by image-based direct cur- vature field estimation for mobile robot navigation [ J ]. In- ternational Journal of Advanced Robotic Systems, 2012,9 : 1-12.
  • 10Harris C,Stephens M. A combined corner and edge detec- tor [ C] //Proceedings of the 4th Alvey Vision Conference. Manchester : University of Manchester, 1988 : 147-151.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部