摘要
定义了满足空间约束的 K 最接近对查询,该查询检索两个数据集在给定约束区域中的 K 最接近对。在空间数据库中,对采用 R 树类型索引存储的数据集给出了三个查询处理算法。其中两阶段的 RJ 和 JR 算法采用了变换范围查询和最接近对查询执行顺序的策略。单阶段基于堆的 SPH 算法采用了最好优先的策略,并利用给出的裁减规则、更新规则和访问顺序规则来提高查询处理效率。实验表明 SPH 具有较好的适用性和性能。
In this paper,constrained K closest pairs query is introduced,which retrieves the K closest pairs satisfying the given spatial constraint from two datasets. For data sets indexed by R-trees in spatial databases, three algorithms are presented for answering this kind of query. Among of them, two-phase RJ and JR algorithms adopt the strategy that changes the execution order of range and closest pairs queries, while single-phase heap-based SPH algorithm adopts best-first strategy and utilizes proposed pruning, updating and visit order heuristics to improve its efficiency. Experimental result shows that SPH has better applicability and performance than RJ and JR.
出处
《计算机科学》
CSCD
北大核心
2006年第5期156-158,165,共4页
Computer Science
基金
国家自然科学基金(60073045)资助
关键词
空间数据库
R树
最接近对查询
约束最接近对查询
Spatial databases, R-trees,Closest pairs query,Constrained closest pairs query