期刊文献+

具有动态调节功能的Fisherface方法 被引量:1

Fisherface Method with Dynamic Adjusting Function
下载PDF
导出
摘要 高维、小样本数据的识别问题,始终是模式识别领域的热点和难点问题。由于训练样本数量很少,当以样本的协方差矩阵作为模式协方差矩阵的估计时,会产生较大的偏差。这是造成模式分类错误的主要原因。本文在详细论述 Fisherface 方法的基础上,提出了具有动态调节功能的 Fisherface(DA-Fisherface)方法。该方法利用测试样本完成了对样本协方差矩阵的动态调节,减小了因样本数目很少所造成的偏差,从而实现了对 Fisher 鉴别矢量集的优化。最后,在 ORL 人脸库上的实验结果表明,该方法的模式分类正确率比 Fisherface 方法有显著提高。 In pattern recognition, the classification of high-dimensional and limited-sample data is not only a hotspot but also a difficulty all the time. Because the number of training samples is very small, big bias will occur when pattern covariance matrixes are estimated by training Sample covariance matrixes. It is also an important reason of wrong classification. On the basis of explaining Fisherface method in detail, this paper proposes a Fisherface method with dynamicadjusting function (DA-Fisherface). The method completes dynamic adjusting the sample covariance matrixes using testing samples, reduces the bias caused by limited training samples, and optimizes the Fisher discriminant vectors. Finally, the experimental results on ORL face database indicate the purposed method gets a higher recognition ratio than Fisher face.
出处 《计算机科学》 CSCD 北大核心 2006年第5期188-190,共3页 Computer Science
关键词 FISHERFACE DA-Fisherface 优化方法 特征提取 人脸识别 Fisherface, DA Fisherface, Optimal method,Feature extraction, Face recognition
  • 相关文献

参考文献10

  • 1Belhumeur P N,et al.Eigenfaces vs.Fisherfaces:Recognition using class specificlinear projection.IEEE Trans.Pattern Anal Machine Intell,1997,19(7):711~720
  • 2Hong Z Q,Yang J Y,et al.Optimal discriminant plane for a small number of samples and design method of classifier on the plane.Pattern Recognition,1991,24(4):317~324
  • 3Liu K,Yang J-Y,et al.An efficient algorithm for Foley-Sammon optimal set of discriminant vectors by algebraic method,International Journal of Pattern Recognition and Artificial Intelligence,1992,6(5):8817~829
  • 4Hua Yu,Jie Yang.A direct LDA algorithm forhigh-dimensional data-with application to face recognition.Pattern Recognition,2001,34(11):2067~2070
  • 5Mika S,Ratsch G,Weston J,Scholkopf B,Muller K.Fisher Discriminat Analysis with Kernels.In:Proc.of the IEEE Neural Networks for Signal Processing Workshop,Madison,1999.41~48
  • 6Vapnik VN.The Nature of Statistical Learning Theory.New York:Springer-Verlag,1995
  • 7Scholkopf Mika S,et al.Input Space Versus FeatureSpace in Kernel-Based Methods.IEEE Trans on Neural Networks,1999,10(5):1000~1017
  • 8Thomaz C E,Gillies D F,Feitosa R Q.A New Covariance Estimate for Bayesian Classifiers in Biometric Recognition.IEEE Transactions on Circuits and Systems for Video Technology,FEBRUARY,2004,14(2):214~223
  • 9Wang Xiaogang,Tang Xiaoou.Dual-Space Linear Discriminant Analysis for Face Recognition Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
  • 10Wang Xiaogang,Tang Xiaoou.Using Random Subspace to Combine Multiple Features for Face Recognition Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition

同被引文献4

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部