期刊文献+

判据搜索算法及其在DNA序列模式发现中的应用(英文) 被引量:2

Criterion Search Algorithm and its Application to Motif Finding in DNA Sequences
下载PDF
导出
摘要 模式发现是计算生物学一个重要的研究方向,但目前的大部分算法还不能保证获得最优的模式。将模式发现问题转化成层次图的路径搜索问题,推导了针对三个序列片段相似性关系的判据,以其作为剪枝规则提出并实现了一种深度优先的穷举搜索算法:判据搜索算法(CriterionSearchAlgorithm,CRISA)。理论分析表明,对于绝大多数模式发现问题,CRISA具有多项式的计算时间复杂度和线性的空间复杂度。对仿真的和实际的DNA序列数据的测试表明,CRISA能够快速而完全地识别出序列中所有的模式,并且获得了优于其它算法的总体评价。 Motif finding is one of the fundamental problems in computational biology with important applications in finding regulatory signals. Though many algorithms have been developed, very few of them can obtain all motifs from the unaligned DNA sequences. A novel criterion for three subsequences was proposed , which was deduced through exploring valid paths in the layer graph. Then this criterion was used as prune rule in the exhaustive depth first search algorithm, criterion search algorithm (CR1SA), to find all putative motifs rapidly. Analysis of the computational complexity and error probability proves that CRISA is efficient in most motif finding problems. Some tests using simulated and real biological data were done and the results show that CRISA is more efficient than other exhaustive search algorithms, and its search speed is even faster than that of many non-exhaustive search algorithms.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2006年第5期1169-1177,共9页 Journal of System Simulation
基金 国家自然科学基金(60471003)
关键词 模式发现 判据 剪枝规则 深度优先搜索 层次图 motif finding criterion prune rule depth first search layer graph
  • 相关文献

参考文献19

  • 1Eskin E,Pevzner P.Finding Composite Regulatory Patterns in DNA Sequences[J].Bioinformatics(S1367-4803),2002,18:354-363.
  • 2Hertz G,Stormo G.Identifying DNA and Protein Patterns with Statistically Significant Alignments of Multiple Sequences[J].Bioinformatics(S1367-4803),1999,15:563-577.
  • 3Lawrence C,Altschul S,Boguski M,et al.Detecting Subtle Sequence Signals:a Gibbs Sampling Strategy for Multiple Alignment[J].Science(S0036-8075),1993,262:208-214.
  • 4Bailey T,Elkan C.Unsupervised Learning of Multiple Motifs in Biopolymers using Expectation Maximization[J].Machine Learning (S0885-6125),1995,21:51-80.
  • 5Pevezner P,Sze S.Combinatorial Approaches to Finding Subtle Signals in DNA Sequences[C] // In Proceeding of the 8th International Conference on Intelligent Systems for Molecular Biology.San Diego:AAAI Press,2000:269-278.
  • 6Buhler J,Tompa M.Finding Motifs using Random Projections[C]// In Proceedings of the Fifth Annual International Conference on Research in Computational Molecular Biology.Montreal:ACM Press,2001:69-76.
  • 7Keich U,Pevzner P.Finding Motifs in the Twilight Zone[J].Bioinformatics(S1367-4803),2002,18:1382-1390.
  • 8Price A,Ramabhadran S,Pevzner P.Finding Subtle Motifs by Branching from Sample Strings[J].Bioinformatics(S1367-4803),2003,19:ii149-ii155.
  • 9Brazma A,Jonassen I,Eidhammer I,et al.Approaches to the Automatic Discovery of Patterns in Bio-sequences[J].J.Comput.Biol.(S1066-5277),1998,5:279-305.
  • 10Tompa M.An Exact Method for Finding Short Motifs in Sequences with Application to the Ribosome Binding Site Problem[C]// In Proceedings of the Seventh International Conference on Intelligent Systems for Molecular Biology.Heidelberg:AAAI Press,1999:262-271.

同被引文献9

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部