期刊文献+

基于HGA-ANN配风方式的锅炉飞灰含碳量优化 被引量:13

HGA-ANN-Based Optimiztion of Unburned Carbon in Fly Ash from Utility Boiler Influenced by Air Distribution Mode
下载PDF
导出
摘要 利用人工神经网络(ANN)进行锅炉飞灰含碳量建模,并分析二次风配风方式对飞灰含碳量的敏感性影响,同时采用混合遗传算法HGA与复合形法对运行工况寻优,获得各种工况下二次风开度的优化调整方式.应用某台300MW机组的现场试验数据进行仿真计算,结果表明该方法可以指导运行人员进行二次风开度的优化调整,降低飞灰含碳量,同时也解决了锅炉变工况下运行参数基准值的确定问题. The content of the unburned carbon in fly ash from utility boiler is modeled by ANN ( Artificial Neural Network), and a sensitivity analysis of the effect of secondary air distribution mode on the unburned carbon is carried out. Meanwhile, the hybrid genetic algorithm (HGA) and the compound form method are employed to search for the optimum solution to the neural network model, thus obtaining optimized distribution modes of secondary air adapting to various operation conditions. By the simulation of the in-site experimental results of a 300MW unit, it is finally concluded that the proposed distribution mode of secondary air is feasible and helps to reduce the content of unburned carbon in fly ash. Moreover, the operation standard values of boiler parameters in different operation conditions can be determined by the proposed method.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第4期96-100,共5页 Journal of South China University of Technology(Natural Science Edition)
关键词 飞灰含碳量 二次风配风 神经网络 混合遗传算法 敏感性分析 unburned carbon content secondary air distribution neural network hybrid genetic algorithm sensitivity analysis
  • 相关文献

参考文献9

二级参考文献29

  • 1李智,蔡九菊,郭宏.基于神经网络的电站锅炉飞灰含碳量软测量系统[J].节能技术,2004,22(4):6-7. 被引量:28
  • 2张才根.改善锅炉水平烟道两侧烟温差的方法及其效果[J].锅炉技术,1994(8):1-4. 被引量:8
  • 3吴国定.DG220/9.8-4型锅炉主蒸汽温度低于设计值的探讨[J].四川电力技术,1994,17(2):44-47. 被引量:1
  • 4赵振宇 徐用懋.模糊理论和神经网络的基础与应用[M].北京,南宁:清华大学出版社,广西科学技术出版社,1997.105-106.
  • 5周昊 朱洪波 曾庭华 等(Zhou Hao Zhu Hongbo Zeng Tinghua et al.)大型四角切圆燃烧锅炉NOx排放特性的神经网络模型(An artificial neural network model on NOx emission property of a high capacity tangentially firing boiler)[J]..
  • 6Hechi Nielsen R. Theory of the back propagation neural network[J]. Proc of IJCNN,1989(1):593-603.
  • 7Zbigniew Michalewicz. Genetci Algorithms + Data Structures = Evolution Programs[C]. 3rd ed, New York:Springer-Verlag Berlin Heidelberg, 1996.
  • 8Hechi Nielsen R.Theory of the back propagation neural network [M].Proc of IJCNN,1989,1:593-603.
  • 9焦李成(Jiao Licheng).神经网络系统理论(The theory of neural network system)[M].西安:西安电子科技大学出版社(Xi'an:Xi'an Electronic and science University Press),1990,242-251.
  • 10Yin C,Luo Z,Zhou J,et al.A novel non-linear programming-based coal blending technology for power plants [J].Chemical Engineering Research and Design,2000,78(1):118-124.

共引文献261

同被引文献98

引证文献13

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部