期刊文献+

掺Co^(3+)和Li^+的LiMn_2O_4晶体结构和电化学性能研究 被引量:10

Structural and Electrochemical Properties of Li^+ and Co^(3+)-Codoped LiMn_2O_4
下载PDF
导出
摘要 以尖晶石LiMn2O4,Li2CO3和Co3O4为原料,采用固相烧结法合成了尖晶石锰酸锂的改性产物。X射线粉末衍射分析表明,改性产物保持了LiMn2O4的立方尖晶石结构。采用Rietveld方法进行结构精修表明,掺杂元素进入了晶胞中的16d位置,改性产物结构分子式可写成[Li]8a[Mn2-xLix/4Co3x/4]16d[O4]32e。随着钴和锂掺杂量的增加,产物16d位置中更多的锰被取代,锰离子平均价态逐渐升高,锰和氧的结合键能增加,键长下降,晶格参数减小。电性能测试表明,锰酸锂掺杂钴、锂后,循环稳定性提高,比容量稍有降低。当锂、钴掺杂量为锰酸锂的0.025倍时,综合性能最佳。 The li^+,Co^3+ codoped LiMn2O4 was prepared by intimately mixing the right amounts of spinel LiMn2O4, Li2CO3 and Co3O4 with solid-state reaction. All the XRD patterns were identified as a single-phase spinel structure. Rietveld refinements of their XRD data revealed that the manganese ions in the 16d sites were replaced by both lithium and cobalt ions, the composition of modified LiMn2O4 could be expressed as the new spinel formula [Li]s4[Mn2-x Lix/4Co3x/4]16a[O4]32e. As the Li^+ , Co^3+ amounts increased, more manganese ions were replaced and their average oxidation state raised, which led to shorter bond distances and smaller cell parameters. The charge/discharge tests indicated that the inclusion of lithium and cobalt ions enhanced the electrochemical cycle ability at the expense of a slight reduction in the initial charge capacity. When the ratio of Co : Mn is 0. 025 : 1, the electrochemical property is optimum.
出处 《稀有金属》 EI CAS CSCD 北大核心 2006年第2期129-133,共5页 Chinese Journal of Rare Metals
基金 国家自然科学基金(50472088)资助项目
关键词 锂离子电池 锰酸锂 尖晶石 RIETVELD lithium-ion battery LiMnO4 cubic spinel Rietveld
  • 相关文献

参考文献14

  • 1Ein Eli Y, Howard Jr W F, Lu S H, et al. LiMn2-xCuxO4 spinels-A new class of 5 V cathode materials for lithium batteries [J]. J. Electrochemical, Structural and Spectroscopic Studies Soc, 1998, 145: 1238.
  • 2Cummow R J, Kock A de, Thackeray M M. Improved capacity retention of lithium manganese oxide spinel cathodes in lithium cells [J]. Solid State Ionics, 1994, 69: 59.
  • 3Hayashi N,Ikuta H:, Wakihara M. Cathode of LiMnyMn2-yO4 and LiMnyMn2-yO4-δ spinel phases for lithium secondary batteries [J].J. Electrochem. Soc., 1999, 146: 1351.
  • 4Song D, Ikuta H, Uchida T, et al. The spinel phases LiAlyMn2-yO4 (y=0, 1/12, 1/9, 1/6, 1/3) and Li(Al,M)1/6 Mn11/6O4(M=Cr, Co) as the cathode for rechargeable lithium batteries [J]. Solid State Ionics, 1999, 117 : 151.
  • 5Song M Y, Ahn D. Improved electrochemical performances of surface-modified spinel LiMn2O4 for long cycle life lithium-ion batteries [J]. Solid State Ionics, 1998, 112: 245.
  • 6Robertson A D, Lu S H, Howard Jr W F. M^3+ -modified LiMn2O4 spinel intercalation cathodes. Ⅱ. Electrochemical stabilization by Cr^3+ [J]. J. Electrochem. Soc., 1997. 144: 3505.
  • 7Zhong Q, Bonakdarpour A, Zhang Gao, et al. Synthesis and electrochemistry of LiNixMn2-xO4 [J]. J. Electrochem. Soc.,1997, 144: 205.
  • 8Hong Young Sik, Han Chi Hwan, Kim Keon, et al. Structural and electrochemical properties of the spinel Li(Mn2-xLix/4Co3x/4)O4[J].Solid State Ionics, 2001, 139: 75.
  • 9Toroya H. The effects of profile-function truncation in X-ray powder-pattern fitting [J]. J. Appl, Cryst., 1985, 18: 351.
  • 10Berg, Rundlof H, Thomas H J O. The LiMn2O4 to lamda-MnO2 phase transition studied by in situ neutron diffraction [J]. Solid State Ionics, 2001, 144: 65.

二级参考文献13

  • 1金维华,卢世刚,蔡振平.不同铝盐对LiMn_2O_4改性材料性能的影响[J].稀有金属,2005,29(4):530-533. 被引量:1
  • 2Tarascon J M, Guromard D. The Li1+xMn2O4/C rocking-chair system: A review [J]. Electrochem Acta, 1993, 38(9): 1221.
  • 3Xia Yongyao, Zhou Yunhong, Maskai Yoshio. Capacity fading on cycling of 4 V Li/LiMn2O4 cells [J]. J. Electrochem. Soc., 1997, 144: 2593.
  • 4Liu Zh, Asishui Yu, Lee T Y. Cycle life improvement of LiMn2O4 cathode in rechargeable lithium batteries [J]. J. Power Sources, 1998, 74: 228.
  • 5Pasquier A Du, Blyr A, Courjal P. Mechanism for limited 55 ℃ storage performance of Li1.05Mn1.95O4 electrodes [J]. J.Electrochem. Soc., 1999, 146: 428.
  • 6Song D, Ikuta H, Uchida T. The spinel phases LiAlyMn2-yO4 (y=0, 1/12, 1/9, 1/6, 1/3) and Li(Al, M)1/6Mn11/6O4 (M=Cr, Co) as the cathode for rechargeable lithium batteries [J]. Solid State Ionics, 1999, 117: 151.
  • 7Hayashi K, Ikuta H, Wakihara M. Cathode of LiMgyMn2-yO4 and LiMgyMn2-yO4-δ spinel phases for lithium secondary batteries [J]. J.Electrochem. Soc., 1999, 146: 1351.
  • 8Wang G X, Brandhurst D H, Liu H K. Improvement of electrochemical properties of the spinel LiMn2O4 using a Cr dopant effect [J]. Solid State Ionics, 1999, 120: 95.
  • 9Li Guohua, Ikuta H, Uchida T. The spinel phases LiMyMn2-yO4 (M=Co, Cr, Ni) as the cathode for rechargeable lithium batteries [J]. J. Electrochem. Soc., 1996, 143: 178.
  • 10Arora P, Popov B N, White R E. Electrochemical investigations of cobalt-doped LiMn2O4 as cathode material for lithium-ion batteries [J]. J. Electrochem. Soc., 1998, 145: 807.

共引文献1

同被引文献145

引证文献10

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部