期刊文献+

LS-Ensem:一种用于回归的集成算法 被引量:2

LS-Ensem:A Ensemble Method for Regression
下载PDF
导出
摘要 借鉴Friedman提出的基于函数空间的梯度下降搜索的思想,提出了一种新的集成学习算法———LSEnsem算法.该算法只要求个体函数满足一个很宽松的条件,从而避免了每轮迭代中寻找最优个体函数所需的大量计算,显著地降低了算法的计算复杂性.理论分析表明该算法具有指数级收敛速度以及良好的泛化性能,文中还给出了泛化误差的界.仿真结果验证了理论分析的结论,并且还显示出LSEnsem算法能够有效地抑制过拟合发生. An novel ensemble learning method for regression, named the LS Ensem algorithm, is presented in this paper by extending the idea of gradient descent search in base function spaces proposed by Friedman. In order to avoid the large amount of calculation needed for finding an optimal base function in each iteration of Friedman's algorithm, base regression functions are only needed to satisfy a very loose condition in the LS-Ensem algorithm, greatly reducing the computation complexity of the algorithm. Theoretical analysis shows that the LS-Ensem algorithm con- verges exponentially, and yields an integrated regression function with good generalization property. The relationship between the number of iterations and the generalization error of the integrated regression function is also derived in this paper. A simulation validates the theoretical results, and shows that the LS-Ensem algorithm can avoid overfitting effectively.
作者 于玲 吴铁军
出处 《计算机学报》 EI CSCD 北大核心 2006年第5期719-726,共8页 Chinese Journal of Computers
基金 "九七三"重点基础研究发展规划项目基金(2002CB312203)资助.
关键词 机器学习 回归分析 集成方法 梯度下降 泛化误差 machine learning regression analysis ensemble method gradient descent generalization error
  • 相关文献

参考文献23

  • 1Freund Y,Schapire R.E..A decision-theoretic generalization of on-line learning and an application to Boosting.Journal of Computer and System Sciences,1997,55(1):119~139
  • 2Freund Y..An adaptive version of the boost by majority algorithm.Machine Learning,2001,43(3):293~318
  • 3Schapire R.E..The strength of weak learnability.Machine Learning,1990,5(2):197~227
  • 4Schapire R.E,Freund Y,Bartlett P,Lee W.S..Boosting the margin:A new explanation for the effectiveness of voting methods.The Annals of Statistics,1998,26(5):1651~1686
  • 5Schapire R.E,Singer Y..Improved Boosting algorithms using confidence-rated predictions.Machine Learning,1999,37(3):297~336
  • 6Breiman L..Bagging predictors.Machine Learning,1996,24(2):123~140
  • 7Breiman L..Arcing the edge.Statistics Department,University of California,Berkeley:Technical Report 486,1997
  • 8Breiman L..Prediction games and arcing algorithms.Neural Computation,1999,11(7):1493~1517
  • 9Duffy N,Helmbold D..Potential boosters? In:Solla S.A,Leen T.K,Müller K.R.eds..Advances in Neural Information Processing Systems 12.Cambridge,MA:MIT Press,2000,258~264
  • 10Friedman J.H,Hastie T,Tibshirani R..Additive logistic regression:A statistical view of Boosting.The Annals of Statistics,2000,28(2):337~374

同被引文献67

  • 1Polikar R. Ensemble learning. Ensemble Machine Learning: Methods and Applications. New York: Springer, 2012. 1-34.
  • 2Zhou Z H. Ensemble Methods: Foundations and Algorithms. New York: CRC Press, 2012.
  • 3Lebanon G, Lafferty J. Boosting and maximum likelihood for exponential models. Advances in Neural Information Processing Systems 14. Cambridge: MIT Press, 2002. 447-454.
  • 4Lee H, Kim E, Pedrycz W. A new selective neural network ensemble with negative correlation. Applied Intelligence, 2012, 37(4): 488-498.
  • 5Liu C L. Classifier combination based on confidence transformation. Pattern Recognition, 2005, 38(1): 11-28.
  • 6Shipp C A, Kuncheva L K. Relationships between combination methods and measures of diversity in combining classifiers. Information Fusion, 2002, 3(2): 135-148.
  • 7Jiang L X, Cai Z H, Zhang H, Wang D H. Naive Bayes text classifiers: a locally weighted learning approach. Journal of Experimental & Theoretical Artificial Intelligence, 2013, 25(2): 273-286.
  • 8Yuksel S E, Wilson J N, Gader P D. Twenty years of mixture of experts. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(8): 1177-1193.
  • 9Shi L, Wang Q, Ma X M, Weng M, Qiao H B. Spam email classification using decision tree ensemble. Journal of Computational Information Systems, 2012, 8(3): 949-956.
  • 10Malisiewicz T, Gupta A, Efros A A. Ensemble of exemplar-SVMs for object detection and beyond. In: Proceedings of the 13th International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011. 89-96.

引证文献2

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部