期刊文献+

Koebe Problems and Teichmiiller Theory

Koebe Problems and Teichmiiller Theory
原文传递
导出
摘要 In this paper we study the deformation space of certain Kleinian groups. As a result, we give a new proof of the finite Koebe theorem on Riemann surfaces from a viewpoint of Teichmüller theory. In this paper we study the deformation space of certain Kleinian groups. As a result, we give a new proof of the finite Koebe theorem on Riemann surfaces from a viewpoint of Teichmüller theory.
作者 Jin Song LIU
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2006年第3期959-962,共4页 数学学报(英文版)
基金 supported by Post-Doctoral Foundation of China
关键词 Koebe problem Teichmüller space Circle Koebe problem, Teichmüller space, Circle
  • 相关文献

参考文献15

  • 1Koebe, P.: Uber die Uniformisierrung belierbiger analytischer kurven, III. Nachr. Ges. Wiss. Gott.,337-358 (1908)
  • 2Koebe, P.: Abhandlungen zur theorie der konformen Abbildung: VI, Abbildung mehrfach zusammenhang-ender Bereiche auf Kreisbereiche etc. Math. Z., 7, 235-301 (1920)
  • 3Abikoff, W.: The Real Analytic Theory of Teichmiiller Space, Lecture Notes in Mathematics 820, New York, 1980
  • 4Sullivan, D.: On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions. Ann.Math, Stud., 97, 465-496 (1981)
  • 5Marden, A.: The geometry of finitely generated kleinian groups. Ann. Math., 99, 383-462 (1974)
  • 6Ahlfors, L., Bers, L.: Riemann's mapping theorem for variabe metrics. Ann. Math., 72, 385-404 (1960)
  • 7Andreev, E. M.." On convex polyhedra in lobachevskii space, at. Sb. (N.S), 81(123), 445-478 (1970).English Transl. in Math. USSR Sb., 12, 413-440 (1970)
  • 8Andreev, E. M.; Convex polyhedra of finite volume in lobachevskii space. Mat. Sb. (N.S), 83 (125),256-260 (1970); English Transl. in Math. USSR Sb., 12, 255-259 (1970)
  • 9Brooks, R.: On the deformation theory of classical Schottky groups. Duke. Math. J., 52(4), 1009-1024(1985)
  • 10Brooks, R.: Circle packings and co-compact extensions of kleinian groups. Invent. Math., 86, 461-469(1986)

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部