期刊文献+

A FUZZY CLOPE ALGORITHM AND ITS OPTIMAL PARAMETER CHOICE 被引量:1

A FUZZY CLOPE ALGORITHM AND ITS OPTIMAL PARAMETER CHOICE
下载PDF
导出
摘要 Among the available clustering algorithms in data mining, the CLOPE algorithm attracts much more attention with its high speed and good performance. However, the proper choice of some parameters in the CLOPE algorithm directly affects the validity of the clustering results, which is still an open issue. For this purpose, this paper proposes a fuzzy CLOPE algorithm, and presents a method for the optimal parameter choice by defining a modified partition fuzzy degree as a clustering validity function. The experimental results with real data set illustrate the effectiveness of the proposed fuzzy CLOPE algorithm and optimal parameter choice method based on the modified partition fuzzy degree. Among the available clustering algorithms in data mining, the CLOPE algorithm attracts much more attention with its high speed and good performance. However, the proper choice of some parameters in the CLOPE algorithm directly affects the validity of the clustering results, which is still an open issue. For this purpose, this paper proposes a fuzzy CLOPE algorithm, and presents a method for the optimal parameter choice by defining a modified partition fuzzy degree as a clustering validity function. The experimental results with real data set illustrate the effectiveness of the proposed fuzzy CLOPE algorithm and optimal parameter choice method based on the modified partition fuzzy degree.
出处 《Journal of Electronics(China)》 2006年第3期384-388,共5页 电子科学学刊(英文版)
基金 Supported by the National Natural Science Foundation of China (No.60202004).
关键词 Data mining Cluster analysis Cluster validity Categorical attributes Optimal parameter choice 数据采集 聚类分析 有效性 参数选择 模糊算法
  • 相关文献

同被引文献21

  • 1STONE-GROSS B,COVA M,CAVALLARO L,GILBERT B,SZYDLOWSKI M,KEMMERER R,KRUEGEL C,VIGNA G Your botnet is my botnet:Analysis of a botnet takeover[C]// Proceedings of the 16th ACM Conference on Computer and Communications Security.New York:ACM,2009:635-647.
  • 2PERDISCI R,CORONA I,DAGON D,LEE W.Detecting malicious flux service networks through passive analysis of recursive DNS traces[C]// Computer Security Applications Conference,ACSAC'09 Annual.Piscataway,NJ,USA:IEEE,2009:311-320.
  • 3BAYER U,COMPARETTI P Mj HLAUSCHEK C,KRUEGEL C,KIRDA E.Scalable,behavior-based malware clustering[C]// Proceedings of the Network and Distributed System Security Symposium,NDSS 2009.Washington DC,USA:The Internet Society,2009(9):8-11.
  • 4RIECK K,TRINIUS P,WILLEMS C,HOLI T.Automatic analysis of malware behavior using machine learning[J].Journal of Computer Security,2011,19(4):639-668.
  • 5GUBA S,RASTOGI R,SHIM K.ROCK:A robust clustering algorithm for categorical attributes[C]// Proceedings of ICDE,99.Piscataway,NJ,USA:IEEE,1999:512-521.
  • 6WANG Ke,XU Chu,LIU Bing.Clustering transactions using large items[C]// Proceedings of the Eighth International Conference on Information and Knowledge Management.New York,USA:ACM,1999:483-490.
  • 7GIBSON D,KLEINBERG J,RAGHAVAN P.Clustering categorical data:An approach based on dynamical systems[J].The VLDB Journal,2000,8(3/4):222-236.
  • 8YANG Yi-lin,GUAN Xu-dong,YOU Jin-yuan.CLOPE:A fast and effective clustering algorithm for transactional data[C]// Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM 2002:682-687.
  • 9DEAN J,GHEMAWAT S.MapReduce:Simplified data processing on large clusters[J].Communications of the ACM,2008,51(1):107-113.
  • 10ZHAO Wei-zhong,MA Hui-fang,HE Qing.Parallel k-means clustering based on mapreduce[J].Cloud Computing,2009,5931:674-679.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部