期刊文献+

Stokes方程的稳定化间断有限元法 被引量:6

DISCONTINUOUS FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS
原文传递
导出
摘要 本文对定常的Stokes方程提出了一种新的间断有限元法,通过对通常的间断Galerkin有限元法应用稳定化思想,建立了一个相容的稳定间断有限元格式,对速度和压力的任意分片多项式空间Pl(K),Pm(K)的间断有限元逼近证明了解的存在唯一性,给出了关于速度和压力的L2 范数的最优误差估计. In this paper, we derive a new discontinuous finite element formulation for the Stokes equations, based on the general discontinuous Galerkin methods. This new formulation is stable and consistent for any combination of discrete discontinuous velocity and pressure spaces, when polynomials of degree 1 are used for each component of velocity and polynomials of m for the pressure, for any l ≥ 1 and rn ≥ 0.Optlmal error estimates for the approximation of both velocity and pressure in L^2 norm are obtained for the Stokes problems, as well as an optimal error estimate for the approximation of velocity and pressure in mesh dependent norm.
作者 骆艳 冯民富
出处 《计算数学》 CSCD 北大核心 2006年第2期163-174,共12页 Mathematica Numerica Sinica
关键词 间断Galerkin有限元法 有限元法 STOKES问题 误差估计 Discontinuous finite element methods, Finite element methods, Stokes problems, error estimate
  • 相关文献

参考文献3

二级参考文献24

  • 1Marinak M M, Haan S W, Tipton R E, Weber S V, Remington B A. Three-dimensional simulations of ablative hydrodynamic instabilities in indirectly driven targets [R]. UCRL-LR-105821-95-3, 168- 178.
  • 2Kershaw D S, Prasad M K, Shaw M J. Three-dimensional, Unstructured-mesh Eulerian hydrodynamics with the upwind, discontinuous finite element method [Z]. Preprint, 160 - 168.
  • 3Zhou Tie, Li Yinfan, Shu Chi-wang. Nmnerical comparison of WENO finite volume and Runge-Kutta Galerkin methods [J]. J Sci Computing, 2001, 16:145 - 171.
  • 4Reed N H, Hill T R. Triangle mesh methods for the Neutron transport equation [R]. Los Alamos Scientific Laboratory, Report LAUR-73-479, 1973.
  • 5Cockburn B, Shu C W. The Runge-Kutta local projection P1-discontinuous Galerkin method for scalar conservation law [J]. M2AN 1991,337: 337 - 361.
  • 6Cockburn B, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws Ⅱ:general framework [J]. Math Comp, 1989, 52: 411- 435.
  • 7Cockburn B, Lin S Y. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws Ⅲ: onedimensional systems [J]. J Comp Phys, 1989, 84: 90- 113.
  • 8Cockburn B, Hou S C, Shu C W. TVB Runge-Kutta discontinuous Galerkin method for conservation laws Ⅳ: the multidimensional case [J]. J Comp Phys, 1990, 54:545 - 581.
  • 9Cockburn B, SHu C W. TVB Runge-Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems [J]. J Comp Phys, 1998, 144: 199-224.
  • 10Bassi F, Rebay S. High-order accurate discontinuous finite element solution of the 2D Euler equation [J]. J Compnt Phys, 1997,138:251 - 285.

共引文献28

同被引文献81

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部