期刊文献+

空间运动体上梁的三维动力学建模和仿真 被引量:6

Three-Dimensional Dynamic Modeling and Simulation of a Beam Attached to a Spatially Moving Base
下载PDF
导出
摘要 对附着在空间运动体上梁的动力学问题进行了研究,运用Lagrange方法建立了中心刚体作任意三维运动时,梁作横向振动和纵向振动的动力学方程,考虑了柔性梁的横向弯曲变形所带来的纵向位移,这种耦合变形使所得到的振动方程包含了动力刚化效应,这是与传统的梁振动模型的不同之处,最后通过仿真算例验证了该方法. The three-dimensional dynamics of a flexible cantilever beam attached to a moving rigid body undergoing an arbitrarily three-dimensional large overall motion is investigated in this paper. A set of dynamic equations for two-dimensional transverse and one-dimensional longitudinal vibrations of the flexible beam is established by using Lagrange's governing equations of motions the coupling effects of dynamic method. In the construction of the the so called transverse deformation-induced longitudinal deformation is included, which leads to the consideration of the dynamic stiffening effects in the obtained dynamic equations. An example is given to show the validity of the method presented in this paper and also the significant effects of the dynamic stiffening terms on the deformation and the dynamic characteristic of the flexible beam, and the difference between the present modeling theory and the traditional vibration theory as well. The traditional vibration theory of flexible beam will produce large error when the flexible beam itself is at higher speed large overall motion. Once the speed reaches at a critical value, the traditional dynamic system will diverge. Whereas the present model has high precision and the dynamic system converges even if the flexible beam undergoes higher speed large overall motion.
出处 《空间科学学报》 CAS CSCD 北大核心 2006年第3期227-234,共8页 Chinese Journal of Space Science
基金 教育部留学回国人员科研启动基金 南京市留学人员科技活动项目择优计划 南京理工大学青年学者基金项目共同资助
关键词 柔性梁 动力刚化 三维振动 Flexible beam, Dynamic stiffening, Three-dimensional vibrations
  • 相关文献

参考文献14

  • 1Kane T R, Ryan R R, Banerjee A K. Dynamics of a cantilever beam attached go a moving base. J. Guid., 1987,10(2):139-151.
  • 2Likins P W. Finite element appendage equations for hybrid coordinate dynamic analysis. J. Solid Struc., 1972, 8:709-731.
  • 3Banerjee A K, Kane T R. Dynamics of a plate in large overall motion. J. Appl. Mech, 1989, 56:887-892.
  • 4Banerjee A K, Dickens J M. Dynamics of an arbitrary flexible body in large rotation and translation. J. Guid., Cont. Dyn., 1990, 19:221-227.
  • 5Wu S C, Haug E. Geometric non-linear substructuring for dynamics of flexible mechanical systems. Intern. J. Num. Meth. Eng., 1988, 26:2211-2226.
  • 6Zhang D J, Liu C Q, Huston R L. On the dynamics of an arbitrary flexible body with large overall motion:an integrated approach. Mech. Struc. Mach., 1995,23(3):419-438.
  • 7Bloch A M. Stability analysis of a rotating flexible system. Acta Appl. Math., 1989, 15:211-234.
  • 8肖世富,陈滨.一类刚-柔耦合系统的建模与稳定性研究[J].力学学报,1997,29(4):439-447. 被引量:37
  • 9蒋丽忠,洪嘉振.作大运动弹性薄板中的几何非线性与耦合变形[J].力学学报,1999,31(2):243-249. 被引量:13
  • 10蒋丽忠,洪嘉振,赵跃宇.作大范围运动弹性梁刚-柔耦合动力学建模[J].计算力学学报,2002,19(1):12-15. 被引量:8

二级参考文献31

  • 1阎保定,郭跟成.机器人三维图形仿真系统中运动学方程建模方法的改进[J].机器人,1997,19(3):202-206. 被引量:6
  • 2[1]KANE T R, RYAN R R. Dynamics of a cantilever beam attached to a moving base[J]. J Guid, 1987, 10(2):139-151.
  • 3[2]BANERJEE A K, DICKENS J M. Dynamics of an arbitrary flexible body in large rotation and translation[J]. J Guid, 1990, 13(2):221-227.
  • 4[3]BANERJEE A K, LEMAK M E. Multi-flexible body dynamics capturing motion-induced stiffness[J]. ASME J Appl Mech, 1991, 58(9):766-775.
  • 5[4]BOUTAGHOU Z E, ERDMAN A G, STOIARSKI H K. Dynamics of flexible beams and plates in large overall motions[J]. ASME J Appl Mech, 1992, 59(12):991-999.
  • 6[5]WALLRAPP O. Linearized flexible multibody dynamics including geometric stiffening effects[J]. Mech Struct Mach, 1991, 19(3):385-409.
  • 7[6]ZHANG D J, LIU C Q, HUSTON R L. On the dynamics of an arbitrary flexible body with large overall motion: an integrated approach[J]. Mech Struct Mach, 1995, 23(3):419-438.
  • 8[7]ZHANG D J, HUSTON R L. On dynamics stiffening of flexible body having high angular velocity[J]. Mech Struct Mach, 1996, 24(3):313-329.
  • 9邹建奇,动力学、振动与控制的研究,1994年
  • 10陈滨,分析动力学,1987年

共引文献87

同被引文献69

引证文献6

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部