期刊文献+

基于组合特征的手写体数字识别方法 被引量:8

Handwritten Digit Recognition Method Based on Combination Features
下载PDF
导出
摘要 提出了一种新的手写体数字识别方法。首先利用核主分量分析技术提取数字图像的全局特征,然后利用独立分量分析技术提取数字图像的局部特征,分别选出部分局部特征向量与部分全局特征向量组合成数字的组合特征向量,然后利用支持向量机分类器进行识别。采用USPS字库进行测试,并与其他特征提取方法进行了比较,实验结果显示基于组合特征方法的识别率明显优于其他方法。 A new method is proposed for handwritten digit recognition. Firstly, we extract global features using Kernel Principal Component Analysis (KPCA) technique and extract local features using Independent Component Analysis (ICA) technique. We select some of the local features and the global features and combine them. Then we perform classification using the combination features. For validation of the method, we tested our method on the USPS database by using linear Support Vector Machine. Meanwhile, we compared performance of our method with that of PCA-based, KPCA-based and ICA-based methods. The experiment results indicate the performance of our method is superior to those of other methods.
出处 《计算机应用研究》 CSCD 北大核心 2006年第6期170-172,共3页 Application Research of Computers
基金 电子对抗技术预研基金项目(NEWL51435QT220401)
关键词 手写体数字 独立分量分析 核主分量分析 支持向量机 Handwritten Digit Independent Component Analysis Kernel Principal Component Analysis Support Vector Machine
  • 相关文献

参考文献9

  • 1芮挺,沈春林,丁健,张金林.基于主分量分析的手写数字字符识别[J].小型微型计算机系统,2005,26(2):289-292. 被引量:22
  • 2M S Bartlett.Face Image Analysis by Unsupervised Learning and Redundancy Reduction[D].University of California San Diego and the Salk Institute,1998.43-45.
  • 3A J Bell,T J Sejnowski.The Independent Components of Natural Scenes Are Edge Filters[J].Vision Research,1997,37(23):3327-3338.
  • 4V Vapnik.An Overview of Statistical Learning Theory[J].IEEE Trans.on NN.,1999,10(3):988-999.
  • 5B Scholkopf,et al.Advances in Kernel Methods--Support Vector Learning[M].Cambridge,MA:MIT Press,1999.101-110.
  • 6B Scholkopf,A J Smola,K R Muller.Nonlinear Component Analysis as a Kernel Eigenvalue Problem[J].Neural Computation,1998,(10):1299-1319.
  • 7P Comon.Independent Component Analysis,a New Concept ?[J].Signal Processing,1994,36 (3):287-314.
  • 8A Hyv-rinen,E Oja.Independent Component Analysis:A Tutorial[EB/ OL].http:/ / www.cis.hut.fi/ projects/ ica/,2004-02-20.
  • 9A Hyv-rinen.Fast and Robust Fixed Point Algorithms for Independent Component Analysis[J].IEEE Transactions on Neural Networks,1999,10 (3):626-634.

二级参考文献2

共引文献21

同被引文献86

引证文献8

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部