期刊文献+

读请求的空间与时间特征建模

Automatic temporal and spatial modeling of read request
下载PDF
导出
摘要 为了改善并行应用程序和并行文件系统的I/O性能,对读请求的空间与时间特征进行建模。使用自相关函数分析和Haar小波变换来自动识别自回归、集成的移动平均的模型结构,通过该模型来预测读请求的时间特征;使用马尔可夫模型对读请求的空间特征进行建模、预测。该模型可以将自回归、集成的移动平均时间预测模型与马尔可夫空间预测模型结合,并自适应地预测什么时间、取哪些数据块、取多少数据块。 In order to improve I/O performance of parallel applications and parallel file systems, an automatic modeler was presented to model and predict for read request temporal and spatial series. It used aatocorrelation function and Haar wavelet transform technology to automatically identify and build Autoregressive Integrated Moving Average (ARIMA) models of interarrival times. It used Markov modeler to model and forecast spatial series. Our prefetching method can combine ARIMA time series predictions and Markov model spatial predictions to adaptively determine when, what, and how many data blocks to be prefetched.
出处 《计算机应用》 CSCD 北大核心 2006年第6期1492-1495,共4页 journal of Computer Applications
基金 广东省中职校长资源网项目(04003)
关键词 并行文件系统 读请求建模 预测 自回归 集成的移动平均模型 马尔可夫模型 parallel file system modeling of read request predict autoregressive integrated moving average model Markov model
  • 相关文献

参考文献6

  • 1BELADY LA. A Study of Replacement Algorithms for Virtual Storage Computers[ J]. IBM Systems Journal, 1966, 5 (2) : 78 - 101.
  • 2BOXJ. Methodology[ EB/OL] . www. bath. ac. uk/ - masar/math0118/forecasting/node14.html, 2005 - 06.
  • 3STRANG G, NGUYEN T. Wavelets and Filter Banks[ M]. Wellesley-Cambridge Press, 2002.
  • 4LANNE M, SAIKKONEN P. Threshold Autoregression for Strongly Autocorrelated Time Series[ Z]. Department of Economics, University of Helsinki, 2000.
  • 5TRAN N, REED DA. Automatic AR1MA Time Series Modeling for Adaptive I/O Prefetching[J]. IEEE Transactions on Parallel and Distributed Systems, 2004, 15 (4) : 362 - 377.
  • 6WONNACOTT RJ, WONNACOTT TH. Introductory Statistics[ M].John Wiley & Sons, 2001.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部