期刊文献+

底混响空间相关函数方法估计载体姿态 被引量:2

Method for vessel attitude estimation by spatial correlation function for bottom reverberation
下载PDF
导出
摘要 在海底是起伏不大的非均匀薄层的假设条件下,建立了底混响空间相关函数模型。当混噪比较高时,模型中空间相关函数相位等于基元间垂向矢量与波数的乘积。对于平面阵而言,基元间垂向矢量是由于基阵载体姿态引起的。因此,可以给出底混响空间相关函数相位与载体横摇角和纵摇角之间的关系式。如果接收阵存在3个接收基元,它们对应平行四边形面积与对角线之比不小于半波长,那么可以通过解方程组的方法得到横摇角和纵摇角的确定解或优化解。由于相位模糊的存在, 解的范围是有限的。通过Fisher信息矩阵得到了这种方法姿态估计的Cramer-Rao下限。仿真实验和海试结果表明这种方法是可行的。 Under the assumption that the sea bottom is an almost-flat and randomly rough thin layer, a spatial correlation model for bottom reverberation was constructed. At high reverberation noise ratio, the phase of the spatial correlation function is the product of sound-wave number and the vertical vector between two hydrophones. In a nominally horizontal plane, roll and pitch bring on the vertical vector between the hydrophones. Then an equation including roll, pitch and the phase of the spatial correlation function was found. If a parallelogram can be constructed by 3 hydrophones and the ratios of its acreage to diagonals are not smaller than half of wavelength, roll and pitch could be obtained analytically or by optimal method. However, the ranges of roll and pitch are restricted because of the phase ambiguity. Using Fisher information matrix, the Cramer-Rao lower bound is obtained. Results from computer simulation and sea test prove the feasibility of the method.
出处 《声学学报》 EI CSCD 北大核心 2006年第3期281-288,共8页 Acta Acustica
基金 国家863计划资助项目(2003AA604030)
关键词 空间相关函数 载体姿态 姿态估计 函数方法 混响 相位模糊 FISHER 函数模型 平行四边形 信息矩阵 Acoustic waves Computer simulation Estimation Functions Hydrophones Mathematical models Reverberation Vectors
  • 相关文献

参考文献7

  • 1Nadler A, Bar-Itzhack I Y and Weiss, H. On algorithms for attitude estimation using GPS. Proceedings of the IEEE Conference on Decision and Control, Sydney, Australia,2000; 4(12): 3321-3326.
  • 2奥里雪夫斯基 B B.海洋混响的统计特性.北京:科学出版社,1977:100—151.
  • 3Gensane M. A statistical study of acoustic signals backscattered from the sea bottom. IEEE Journal of Oceanic Engineering, 1989; 14(1): 84-93.
  • 4徐新盛,张燕,李海森,杨士莪.海底混响仿真研究[J].声学学报,1998,23(2):141-148. 被引量:35
  • 5李风华,刘建军.浅海混响的垂直相干性[J].声学学报,2003,28(6):494-503. 被引量:20
  • 6彭朝晖,周纪浔,张仁和.非均匀海底和粗糙界面引起的平面内海底散射[J].中国科学(G辑),2004,34(4):378-391. 被引量:9
  • 7Steven M K.统计信号处理基础-估计与检测理论.北京:电子工业出版社,2003:23-69.

二级参考文献18

  • 1[1]Brekhovskikh L M, Lysanov Y P. Fundamentals of Ocean Acoustics, 2nd ed. NewYork: Springer-Verlag,1991
  • 2[2]Ellis D D, Crowe D V. Bistatic reverberation calculations using a three-dimensional scattering function. J Acoust Soc Am, 1991, 89:2207~2214
  • 3[3]Caruthers J W, Novarini J C. Modeling bistatic bottom scattering strength including a forward scatter lobe.IEEE J Ocean Eng, 1993, 18:100~107
  • 4[4]Willams K L, Jackson D R. Bistatic bottom scattering: Model, experiments, and model/data comparison. J Acoust Soc Am, 1998, 103:169~181
  • 5[5]Ivakin A N, Lysanov Y P. Underwater sound scattering by volume in homogeneities of a bottom medium bounded by a rough surface. Sov Phys Acoust, 1981, 27:212~215
  • 6[6]Hines P C. Theoretical model of in-plane scatter from a smooth sediment seabed. J Acoust Soc Am, 1996,99:836~844
  • 7[7]Chernov L A. Wave Propagation in a Random Medium. Silverman R A. translated from the Russian, New York: McGraw-Hill, 1960
  • 8[8]Hines P C. Theoretical model of acoustic backscatter from a smooth seabed. J Acoust Soc Am, 1990, 88:324~334
  • 9[9]Brekhovskikh L M, Godin O A. Acoustics of Layered Media Ⅱ, 2nd ed. NewYork: Springer, 1999
  • 10[10]Novarini J C, Caruthers J W. A simplified approach to backscattering from a rough seafloor with sediment inhomogeneities. IEEE J Ocean Eng, 1998, 23:157~166

共引文献56

同被引文献21

  • 1冯雷,王长红,汪玉玲,邱薇.相关测速声纳工作原理及海试验证[J].声学技术,2005,24(2):70-75. 被引量:16
  • 2朱维庆,冯雷,王长红,汪玉玲,邱薇.声相关载体速度测量理论和信号处理方法[J].声学学报,2006,31(4):289-296. 被引量:10
  • 3朱维庆,冯雷,王长红,汪玉玲,邱薇.声相关流体速度测量理论和信号处理方法[J].声学学报,2007,32(2):144-150. 被引量:15
  • 4Hole S K, Woodward B, Forsythe W. Design constraints and error analysis of the temporal correlation log [J]. IEEE J of Oceanic Eng, 1992, 17 (3): 269-279.
  • 5Frank R Dickey Jr, John A Edward. Velocity measurement using correlation sonar [C]//Proceedings of IEEE Plans, 1978, San Diego, CA, November 6-9, 1978: 255-264.
  • 6Steven E Bradley, Kent L Deines, Francis D Rowe. Acoustic correlation current profiler[J]. IEEE J of Oceanic Eng, 1991,0E-16: 408-414.
  • 7Weiqing ZHU, Changhong WANG, Yong HUANG, Ping HE. Theoretical model and error analysis of Acoustic Correlation Current Profiler (ACCP) [C]// Proceedings of IEEE Conference OCEANS "99, San Diego, USA, 1999: 382-385.
  • 8Weiqing ZHU, Changhong WANG, Ping HE, Feng PAN, Yong HUANG, Min ZHU. IOA-1 Acoustic Correlation Current Profiler (ACCP)[C]// Proceedings of IEEE Conference OCEANS "2000, Providence, Rhode Island, USA, 2000: 777-779.
  • 9Dickey Jr F R, Edward J A. Velocity measurement using correlation sonar. Proceedings of the IEEE Conference on Position Location and Navigation, San Diego, USA, 1978: 255- 264.
  • 10Bradley S E, Deines K L, Rowe F D. Acoustic correlationcurrent profiler. IEEE J. Ocean. Eng., 1991; 16(4): 408 -414.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部