期刊文献+

基于Screened Ratio原理的冲击噪声环境下DOA估计算法 被引量:4

Screened-Ratio-Principle-Based DOA Estimation Algorithm in Impulsive Noise Environment
下载PDF
导出
摘要 该文提出了一种冲击噪声环境中DOA估计的算法。算法首先根据Screened ratio原理构造阵列信号的相关矩阵,然后利用MUSIC算法实现DOA估计。与基于分数低阶矩(FLOM)的算法相比,该文算法不需要选择FLOM参数p。计算机仿真表明该文算法在冲击噪声环境下具有更佳的稳定性和估计精度。 This paper present a new DOA estimation algorithm in impulsive noise environment, The algorithm uses firstly screened ratio principle to construct the correlation matrix of the array data and then implements the DOA estimation by MUSIC algorithm. In comparison with the Fractional Lower Order Moment (FLOM)-based algorithms, the proposed algorithm does not need the selection of the FLOM parameter. Computer simulations show that the algorithm is more robust and more accurate than FLOM-MUSIC algorithm.
作者 何劲 刘中
出处 《电子与信息学报》 EI CSCD 北大核心 2006年第5期875-878,共4页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60472059)资助课题
关键词 MUSIC算法 冲击噪声 协变系数 分数低阶矩 MUSIC algorithm, Impulsive noise, Covariation coefficient, Fractional lower order moments
  • 相关文献

参考文献9

  • 1Krim H, Viberg M. Two decades of array signal processing research:The parametric approach. IEEE Signal Processing Mag,1996, 13(2): 67 - 94.
  • 2Shao M, Nikias C L. Signal Processing with Alpha-Stable Distributions and Applications. New York: Wiley, 1995, Chap 1,2.
  • 3Tsakalides P, Nikias C L. Maximum likelihood localization of sources in noise modeled as a stable process[J]. IEEE Trans on SP,1995, 43(10): 2700 - 2713.
  • 4Tsakalides P, Nikias C L The robust covariation-based MUSIC (ROC-MUSIC) algorithm for bearing estimation in impulsive noise environments[J]. IEEE Trans on SP, 1996, 44 (7):1623- 1633.
  • 5Liu T H, Mendel J M. A subspace-based direction finding algorithm using fractional lower order statistics[J]. IEEE Trans on SP, 2001,49 (7): 1605 - 1613.
  • 6吕泽均,肖先赐.基于分数阶矩的测向算法研究[J].电波科学学报,2002,17(6):561-564. 被引量:10
  • 7Kanter M, Steiger W L. Regression and autoregression with infinite variance. Adv. Appl. Probab., 1974, 6(4): 768 - 783.
  • 8Shao M, Nikias C L. Signal processing with fractional low order moments: stable processes and their application[J]. Proc IEEE,1993, 81:986 - 1010.
  • 9Miller G. Properties of certain symmetric stable distribution. J. of Multivariate Anal., 1978, 8:346 - 360.

二级参考文献7

  • 1R O Schmidt. Mutiple emitter location and signal parameter estimation[J]. IEEE Trans. Antanna Propagat., Mar. 1986, AP(34): 276~280.
  • 2R roy and T Kailath. ESPRIT-estimation of signal parameter via rotational invairance techques[J]. IEEE Trans. Signal Processing, July 1989,37(7): 984~99.
  • 3E G Jerry and M C Dogan. Applications of cumulants to array processing-part Ⅳ:direction finding in coherent signals case[J]. IEEE Trans. Signal Processing, Sep. 1997,45(9): 2265~2275.
  • 4G Xu and S D Silverstein. Beamspace ESPRIT[J]. IEEE Trans. Signal Processing, Feb. 1994,42(2): 349~355.
  • 5G A Tsihrintzis and C L NiKias. Performance of optimum and suboptimum receivers in the presen- ce of impusive niose modeled as an alpha-stable process[J]. IEEE Trans. Comm., Feb./Mar./Apr. 1995, 43(2/3/4): .904~913.
  • 6P Tsakalides and C L Nikias. The robust covariation-based MUSIC(ROC-MUSIC) Algori- thm for bearing estimation in impusive noise envi- ronments[J]. IEEE Trans. Signal Processing, July 1996, 44(7): 1623~1633.
  • 7T -H Liu and J M Mendel. A subspace-based direction finding algorithm using fractional lower order statistics[J]. IEEE Trans. Signal Processing, Aug. 2001, 49(8): 1605~1613.

共引文献9

同被引文献38

  • 1黄磊,张林让,吴顺君.一种低复杂度的信号子空间拟合的新方法[J].电子学报,2005,33(6):982-986. 被引量:9
  • 2何劲,刘中.冲击噪声环境中求根类DOA估计方法研究[J].系统工程与电子技术,2005,27(12):2103-2106. 被引量:1
  • 3何劲,刘中.利用分数低阶空时矩阵进行冲击噪声环境下的DOA估计[J].航空学报,2006,27(1):104-108. 被引量:14
  • 4Viberg M, Otterstem B. Sensor array processing based on subspace fitting [ J ]. IEEE Trans on Signal Processing, 1991,39(57) :1110 - 1121.
  • 5Deneire L, Ayadi J. Weighted and unweighted subspace fitting without eigendecomposition [ C ]// IEEE Fifth Symposium on Communication and Vehicular Technology, Benelux, Twente, Netherlands: IEEE Press, 1997:407-410.
  • 6Swindlehurst A. Subspace fitting with diversely polarized antenna arrays[J]. IEEE Transaction on Antennas and Propagation, 1993, 41 (12) : 1687 - 1694.
  • 7Tsung Hsien Liu, Jerry M. Mendel. A subspace-based direction finding algorithm using fractional lower order statistics[J]. IEEE Transactions on Signal Processing, 2001,49 (8) :1605 - 1613.
  • 8NIKIAS C L,SHAO M. Signal Processing with Alpha-stable Distributions and Applications[M]. New York: Wiley, 1995.
  • 9SHAO M, NIKIAS C L. Signal processing with fractional lower order moments: stable processes and their applications [J].Rroc IEEE,1993,81(7) : 986-1010.
  • 10ZHA Dai-feng, QIU Tian-shuang. Direction finding in non- Gaussian impulsive noise environments [ J ]. Digital Signal Processing, 2007,17(2): 451 -465.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部