期刊文献+

基于频谱法与径向基函数网络的水电机组振动故障诊断 被引量:31

Vibrant Fault Diagnosis of Hydro-turbine Generating Unit Base on Spectrum Analysis and RBF Network Method
下载PDF
导出
摘要 引起水电机组振动的原因很复杂,而且水电机组的振动故障往往是多故障同时发生,使得故障诊断很困难,目前主要是应用基于模式识别的神经网络来进行故障分类,尤其是BP网络应用较多。文章提出应用频谱法与径向基神经网络相结合的方法对水电机组的振动故障进行诊断。采用对水电机组振动信号进行频谱分析,提取该信号在频率域的特征量,将频谱特征向量作为学习样本,通过训练,使神经网络能够反映频谱特征向量和故障类型的映射关系,从而达到故障诊断的目的。水电机组振动故障诊断仿真分析表明,与常规方法相比,利用频谱分析和神经网络相结合的方法进行故障诊断具有简单有效等优点。 As the complexity of vibrant reasons and the multi-fault of coupling vibration, the vibrant fault diagnosis is very difficulty. The vibrant fault diagnosis of Hydro-turbine Generating Unit is distinguished by artificial neural network based on patterns recognition at present, especially by back propagation (BP) neural network. The method of spectrum and radial basis function (RBF) network was investigated for the vibration fault diagnosis of Hydro-turbine Generating Unit. Applying spectrum analysis to get the characteristics of this signal in frequency domain for the unit, and then using them as learning samples to train the network for realizing the mapping relationship between the fault and the spectrum characteristic, this method can be used for diagnosis of the unit faults efficiently. The diagnosis simulation experiments show that the proposed method can be diagnosed the faults of Hydro-turbine Generating Unit easily and efficiently.
出处 《中国电机工程学报》 EI CSCD 北大核心 2006年第9期155-158,共4页 Proceedings of the CSEE
基金 国家自然科学基金项目(90410019)~~
关键词 水电机组 故障诊断 频谱分析 径向基函数网络 神经网络 hydro-turbine generating unit fault diagnosis spectrum analysis radial basis function network neuralnetwork
  • 相关文献

参考文献11

二级参考文献84

  • 1颜延虎,钟秉林,黄仁,万德均.神经网络技术及其在旋转机械故障诊断中的应用[J].振动工程学报,1993,6(3):205-212. 被引量:23
  • 2沈清.神经网络应用技术[M].长沙:国防科技大学出版社,1993..
  • 3胡守仁 余少波 戴蔡.神经网络导轮[M].长沙:国防科技大学出版社,1992..
  • 4[1]Fukui C,Kawakami J.An expert system for fault section estimation using information from protective relays and circuit breakers[J].IEEE Transaction on Power Delivery,1986,1(4):83-90.
  • 5[2]Yang C L,Okamoto H,Yokoyama A,Sekine Y.Expert system for fault section estimation of power system using time sequence information[J].Electrical Power & Energy Systems,1992,14:225-232.
  • 6[3]Ernesto Vazquez M, Oscar L,Chacon M,et al..An on line expert system for fault section diagnosis in power system[J].IEEE Transactions on Power Systems,1997,12(1):357-362.
  • 7[4]Xu K L,Zhou M,Ren J W.An objectoriented power system fault diagnosis expert system[C].International Conference on Electrical Engineering (ICEE'99), Hong Kong:1999.223-226.
  • 8[5]Oyama T.Fault section estimation in power system using Boltzmann machine[C].Proceedings of the Second International Forum on Application of Neural Networks to Power Systems (ANNPS'93),1993,3-8.
  • 9[6]Wen F.S. and Han Z.X., Fault section estimation in power systems using a genetic algorithm[J].Electric Power Systems Research,1995,34(3):165-172.
  • 10[7]Wen F S,Han Z X.A refined genetic algorithm for fault section estimation in power systems using the time sequence information of circuit breakers[J].Electric Machines and Power Systems,1996,24(8):801-815.

共引文献429

同被引文献303

引证文献31

二级引证文献337

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部