期刊文献+

Generalized Cesàro Operator on Dirichlet Spaces

加权Dirichlet空间上的一般Cesàro算子(英文)
下载PDF
导出
摘要 In this paper, we study the boundedness of the generalized Cesàro operator on the weighted Dirichlet spaces Dα={f∈H(D);‖f‖Dα^2=|f(0)|^2+∫D|f'(z)|^2(1-|z|^αdm(z)〈+∞},where -1 〈 α 〈+∞ and H(D) is the class of all holomorphic functions on the unit disc D. 对加权Dirichlet空间我们研究了其上一般Cesaro算子的有界性.此处H(D)表示复平面单位圆盘D上全纯函数的全体.
作者 唐笑敏
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2006年第2期207-212,共6页 数学研究与评论(英文版)
基金 the National Natural Science Foundation of China (10471039) the Natural Science Foundation of Zhejiang Province (103104)the Natural Science Foundation of Huzhou City (2005YZ02)the Foundation of Huzhou Teachers'College (KX21030)
关键词 weighted Dirichlet space generalized Cesàro operator weighted compositiono perator boundedness. 加权Dirichlet空间 一般Cesàro算子 加权复合算子 有界性
  • 相关文献

参考文献11

  • 1STEMPAK K, Cesaro averaging operators [J]. Proc. Roy. Soc, Edinburgh Sect. A, 1994, 124: 121-126.
  • 2ANDERSEN K F. Castro averaging operators on Hardy spaces [J]. Proc, Roy. Soc. Edinburgh Sect.A, 1996,126: 617-624.
  • 3XIAO Jie. Cesaro-type operators on Hardy, BMOA and Bloch spaces [J]. Arch. Math. (Basel), 1997, 68:398-406.
  • 4GIANG D V, MORICZ F. The Ceshro opera,or is bounded on the Hardy space H^1 [J]. Acta Sci. Math.(Szeged), 1995, 61: 535-544.
  • 5MIAO J.The Cesaro operator is bounded in H^p for 0 < p < 1 [J]. Proc. Amer. Math. Soc., 1992, 116:1077-1079.
  • 6SISKAKIS A G.Composition semigroups and the Cesaro operator on H^p[J]. J. London Math. Soc., 1987,86(2): 153-164.
  • 7SISKAKIS A G, The Cesaro operator is bounded on H^1[J]. Proc. Amer. Math. Soc., 1990, 110(2): 461-462.
  • 8SISKAKIS A G. On the Bergman space norm of the Ceshro operator [J]. Arch. Math., 1996, 67: 312-318.
  • 9GALANOPOULOS P. The Cesaro operator on Dirichlet spaces [J]. Acta Sci. Math., 2001, 67: 411-420.
  • 10STEVIC S. The generalized Cesaro operator on Dirichlet spaces [J]. Studia Sci. Math. Hungar., 2003, 40(1-2):83-94.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部